
Textual Modeling Scalability
Studies

Máté Karácsony1,2, Gábor Ferenc Kovács1, Dávid János Németh1, Boldizsár

Németh1, Zoltán Gera1, Attila Ulbert1, Tamás Kozsik1, Gergely Dévai1,2

1ELTE-Soft Nonprofit Ltd.

2Ericsson

October, 2015

1

1 Contents
1 Introduction .. 1

1.1 Availability of used software ... 1

1.2 Short summary of the findings.. 2

2 txtUML runtime scalability .. 2

3 txtUML feature study .. 5

4 Xtext+Xbase editor feature scalability .. 7

4.1 XtxtUML .. 8

4.2 Java-- ... 8

4.3 Xtend ... 8

5 Action code representation .. 9

1 Introduction

The goal of this study is to evaluate text-based technologies and given software projects regarding their

applicability for executable UML modelling in an Eclipse development environment.

1.1 Availability of used software

 Case studies for this study:

o http://modelexecution.eltesoft.hu/20151030/

 txtUML: Textual, executable, translatable UML

o GitHub: https://github.com/ELTE-Soft/txtUML

o Webpage with documentation and releases: http://txtuml.inf.elte.hu/

 xUML-RT Model Executor:

o Webpage with documentation and releases: http://modelexecution.eltesoft.hu

 Java--: a simpler version of Java aiming to teach programming

o GitHub: https://github.com/LorenzoBettini/javamm

 Xtend: modernized Java

o Webpage with documentation and releases: http://www.eclipse.org/xtend/

http://modelexecution.eltesoft.hu/20151030/
https://github.com/ELTE-Soft/txtUML
http://txtuml.inf.elte.hu/
http://modelexecution.eltesoft.hu/
https://github.com/LorenzoBettini/javamm
http://www.eclipse.org/xtend/

2

1.2 Short summary of the findings

The runtime scalability study shows that both the Model Executor and txtUML are ready for automated

mass testing regarding runtime performance. For small number of objects, the Model Executor is faster,

but txtUML scales considerably better for large number of objects.

The txtUML feature study shows that basic functionality of the custom syntax (XtxtUML) is ready, but

there are many time consuming tasks ahead of us: extending validation, customizing the syntax even

more, customizing content assist, adding quick fixes.

There are two big tasks: (1) adding support to split models in multiple files, (2) making the model export

and diagram generation incremental.

The Xtext/Xbase scalability shows that the technology can be used in practice for small and medium

sized files. There are no limitations for the number of files with cross-references.

Regarding the export of action code, the proposal is to transform the action code to standard UML2

activities, but into separate models on a per class basis. Papyrus does not load these models unless

needed, which is important for scalability.

2 txtUML runtime scalability

This study evaluates the runtime performance of txtUML model execution different number of

execution cycles and different number of objects created.

The model has 2 classes: A is a permanent singleton, while B-s are created and destroyed as the

execution proceeds. A and B both have a state machine with 4 states. A’s state machine is cyclical. The

length of the measurement is given by the number of cycles A must perform. The instance of A sends

signals to B-s to step on their state machines and also does backward movement when an object of B is

destroyed.

The test model has two parameters: the number of object instances (N) of type B and the number of

iterations (M). The model first creates N object instances and performs N link operations, then starts the

iterations. Each iteration consists of 9 signal sending operations, the same number of state transitions, 1

object deletion, 1 object creation, 1 link and 1 unlink operations, 2 association navigations and the

evaluation of 10 branch conditions. After the M iterations, all existing N objects of type B and their N

links are deleted.

3

Class diagram of the model:

State machine of A:

4

State machine of B:

The same model is implemented both in Papyrus and in txtUML. The measurements were done on an

Ericsson laptop: HP EliteBook notebook with Intel Core i5-3437U CPU @ 1.9 GHz and 8 GB RAM, running

64 bit Windows 7. The limit of each measurement was 11 minutes, the “>660” cells in the following

tables denote longer (interrupted) experiments.

Model Executor results:

ME runtimes (sec)
Nr of objects

100 1000 10000 100000

Iterations

100 1 1 8 >660

1000 1 2 19 >660

10000 3 12 113 >660

100000 9 67 >660

1000000 63 601 >660

10000000 >660 >660

The results show that, up to 1000 instances and 1000 iterations, the model was executed within a

couple of seconds. Up to 10000 objects and 10000 iterations, the execution time was under 2 minutes.

This probably covers the volume of usual regression and nightly testing on model level within

reasonable execution time. On the other hand, we expected better scalability when increasing the

number of object instances with a fixed number of iterations. We plan to review the generated code and

the runtime module to find the cause of the degradation.

5

txtUML results:

txtUML runtimes (sec)
Nr of objects

100 1000 10000 100000 1000000

Iterations

100 1 1 4 339 >660

1000 2 2 5 404 >660

10000 5 5 11 415 >660

100000 20 25 38 >660

1000000 123 145 368 >660

10000000 >660 >660 >660

For small number of objects (100), txtUML execution is approximately two times slower than the Model

Executor, but is scales better for large number of objects: Already in case of 1000 objects it is faster than

the ME and the difference is growing with the number of objects.

In summary, both tools are applicable for automated mass testing in practice.

3 txtUML feature study

Requirement Status, effort needed

Custom expression syntax (eg. named parameters
with ‘=>’, navigation with ‘->’, filter expressions)

Single step navigation is supported, easy to

extend to navigation chains.

Support for named parameters seems hard.

Custom type system (eg. collections, casts,
primitive types)

Currently only one collection (with bag

semantics) is supported, easy to extend to

support other collections.

Xbase implicit and explicit casts are supported

in the frontend, but model export does not yet

support any cast operations.

Supported primitive types: integer, string,

boolean. All Xbase/Java operations are

available in the frontend, but model export

supports just a few of these. Validation needs

to be extended to limit the set of operations.

Currently the syntax `int` and `boolean` is used

instead of `Integer` and `Boolean`, expected to

be easy to change.

6

Syntax highlight Ready.

Content assist Supported, but the lists are too long, needs to

be customized. No technical difficulty

expected.

Outline view Ready, including custom icons.

Validation errors Partial support. Technically easy, but time-

consuming to complete.

Quick fixes Not supported. Technically easy but time-

consuming to implement all.

Breakpoint support Ready.

Debug commands (run, step, pause etc.) Ready.

Model export/import/transformation Model export is supported into EMF-UML2.
XtxtUML files are incrementally compiled to
JtxtUML Java code. The syntax tree of this Java
code is created and visited using JDT and the UML
model is populated during the visiting process.

Model import is currently not supported. There
was an earlier case study to convert the structural
part of EMF-UML2 models to JtxtUML.
Conversion from JtxtUML to XtxtUML should be
very easy to implement.

Incremental transformation XtxtUML to JtxtUML and to Java bytecode
transformations are incremental, therefore
running XtxtUML models is like running Java
programs in Eclipse.
The EMF-UML2 export is not incremental. In order
to have instant visual feedback during typing the
code, this transformation has to be made
incremental. Note that this is a major task and its
priority needs to be carefully set compared to
language feature implementation.

Support for graphical views Papyrus diagram generation is implemented for
class and state diagrams. The layout of class
diagram can be defined in text. State diagrams
have default (poor) layout. Making available the
diagram descriptions for state diagrams is ongoing.

7

4 Xtext+Xbase editor feature scalability

Xtext is a framework to create editor and compiler support for textual languages in Eclipse. It provides

means to define the language syntax as a context free grammar (with restrictions of LL parsing) and

customize editor features.

Xbase is an implementation of a Java like expression language (with many extensions) to serve as a

(customizable) default implementation for the expression layer of DSLs. It provides tight integration with

Java and support for standard debugging features via incremental translation to Java.

Customization of Xbase is possible by deriving from its grammar, and by overriding and extending its

default type computation and compilation mechanisms. The debugging support is provided directly by

the expression compiler, by saving location information into trace files and source maps during code

generation. The structural, non-Xbase parts of a DSL are compiled to Java by associating a Java construct

for each AST node type of the DSL. The association process is often referred as inferring. This process is

called by a special, replaceable Generator class, which is a part of Xbase. For each structural element, it

infers the associated Java construct then compiles it. For each Xbase expression it calls the Xbase

compiler that will compile Java code with location information. By replacing this generator, we are able

to replace the whole Xbase infrastructure with a custom implementation which also provides debugging

support, but in this case we have to reimplement the whole expression compiler with type computation.

The following scalability measurements were done on an HP EliteBook Folio 9480m laptop with 8GB

memory and an Intel Core i5-4310U CPU, running 64-bit Windows 7. The tests were run under Eclipse

Luna SR2, using Xtext version 2.8.4. Eclipse was configured to have 2GB heap memory, using the

“-Xmx2048m” Java switch in eclipse.ini.

In the following tables the column “Opening” refers to opening only a single source file, not every file

from the project. Column “Compilation” contains the full compilation time of the whole project into Java

class files. The row headers are encoded in the format “nFmL”, where n is the number of individual

source files, and m is the number of lines in each source file. When there are multiple source files, they

have random cross-references between each other.

The typing experience was always smooth, independently of the used language, file count or the

number of lines. Syntax highlight was also instantaneous in case of keywords. However, semantic

highlighting of Java built-in types took 1 or 2 seconds in all cases. Navigation inside a single source file

was also immediate. Opening a cross reference in a different source file only took the same amount of

time as opening the target source file without navigation.

From data below we can assume that most of the analyzed features are only depending on the length of

the current file, not on the number of files. There are no significant differences between languages

regarding to opening files, creating the outline, navigating between references and compilation to Java.

There were several very small differences in the performance of context assist and validation. Currently

XtxtUML has a slower scoping implementation than chosen reference languages. However, it

8

outperforms the others in validation speed, as many of the possible validation rules are not

implemented yet.

4.1 XtxtUML

XtxtUML is a custom DSL syntax for txtUML, implemented via Xtext and Xbase. The experiment was

done using branch “xbase-measure” of the corresponding GitHub repository.

 Opening Outline Context assist Validation errors Compilation

1F10L 1-2 sec 1 sec 2-3 sec <1 sec 1-2 sec

1F100L 1-2 sec 1 sec 2-3 sec <1 sec 1-2 sec

1F500L 1-2 sec 1-2 sec 2-3 sec 1-2 sec 1-2 sec

1F1000L 3-4 sec 2 sec 2-3 sec 1-2 sec 2-3 sec

10F100L 1-2 sec 1 sec 2-3 sec <1 sec 3-4 sec

100F100L 1-2 sec 1 sec 2-3 sec <1 sec 18-20 sec

500F100L 1-2 sec 1 sec 2-3 sec <1 sec 1-2 min

1000F100L 1-2 sec 1 sec 2-3 sec <1 sec 3 min

4.2 Java—

Java-- is a simpler version of Java aiming to teach programming. It customizes Xbase expressions and

type system to make them look like and behave exactly as Java expressions and statements.

 Opening Outline Context assist Validation errors Compilation

1F10L 1-2 sec 1 sec instant 1-2 sec 1-2 sec

1F100L 2-3 sec 1 sec instant 1-2 sec 1-2 sec

1F500L 2-3 sec 1 sec 1 sec 1-2 sec 1-2 sec

1F1000L 3-4 sec 2 sec 2 sec 3-4 sec 3-4 sec

10F100L 1-2 sec <1 sec instant 1-2 sec 2-3 sec

100F100L 1-2 sec <1 sec instant 1-2 sec 8-9 sec

500F100L 1-2 sec <1 sec instant 1-2 sec 1-2 min

1000F100L 1-2 sec <1 sec instant 1-2 sec 2-3 min

4.3 Xtend

Xtend is a flexible and expressive dialect of Java, which is implemented over Xbase. Most of Xbase and

Xtext itself is now written in Xtend.

 Opening Outline Context assist Validation errors Compilation

1F10L 1-2 sec 1 sec instant 1 sec 1-2 sec

1F100L 1-2 sec 1 sec instant 1 sec 1-2 sec

9

1F500L 1-2 sec 1 sec <1 sec 1 sec 2-3 sec

1F1000L 1-2 sec 1-2 sec 1-2 sec 2-3 sec 2-3 sec

10F100L 1-2 sec 1 sec instant 1 sec 1-2 sec

100F100L 1-2 sec 1 sec instant 1 sec 14-15 sec

500F100L 1-2 sec 1 sec instant 1 sec 1-2 min

1000F100L 1-2 sec 1 sec instant 1 sec 2-3 min

5 Action code representation

This section discusses different ways to communicate action code from a textual model to a code

generator module, whose basic input is an EMF-UML2 model. We will assume that the basic

communication interface between the textual model editing frontend and the code generator is EMF-

UML2 representation, because this architecture is standards compliant and opens up the possibility to

pull in third party UML tools into the tool-chain in the long run. (If this is not a requirement, then any

kind of “shortcuts” can be used to feed the code generator from the textual input.)

5.1 String in opaque behavior

When generating the EMF-UML2 from a textual model representation, it is possible to “cut” the action

code fragments from the source and “paste” them into the UML model into opaque behaviors.

Pro:

 This is probably the most compact representation and the UML model generation is probably

the fastest this way.

Con:

 The code generator will need an extra component to parse the opaque behaviors, type check

them and connect the parsed elements to the rest of the UML model. This is waste of code and

time, because the same capability and information is present on the text editor / model

generator side.

 If the action code syntax is not standard, the model with opaque behaviors will not be fully

standards based and only its structural part would be processed by third party UML tools.

5.2 UML activities

It is possible to translate the action code to UML activities. However, UML activities provide a verbose

representation which results in large UML models, as shown by the following experiment.

10

The models of the experiment contain different number of classes (10, 50 and 100), and one association

per two classes. Each class owns 10 attributes of different basic UML types and 10 operations with 14

lines of action code each (local variable, object creation, assignment operations, if, while). The same

models were also generated with empty operation bodies for comparison.

Technically, the models were generated in XtxtUML syntax by a Java program then translated to EMF-

UML2 models by the txtUML framework.

 10 classes 50 classes 100 classes

 Size (Kb) Generation
time (sec)

Size (Kb) Generation
time (sec)

Size (Kb) Generation
time (sec)

With
complete
operations

6495 3 32475 18 64953 35

With empty
operations

169 <1 844 1 1687 2

In case of 50 classes and above with complete operation bodies, the default 512 MB memory limit of

Eclipse was not enough, and it had to be raised to 1024 MBs to make the model export possible.

Pro:

 Fully standards-based.

Con:

 Does not scale.

5.3 UML activities in separate models

It is possible to fragment an EMF-UML2 model. Activities of operation bodies and of state machine

entries/exits/effects can also be separated, as the following example shows:

example_structure.uml, storing the structure of a model (two classes, an association and minimalistic

state machine):

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="20131001" xmlns:xmi="http://www.omg.org/spec/XMI/20131001"
xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML" xmi:id="_ipySwHyQEeWMxelKhvei4w"
name="example_structure">
 <packagedElement xmi:type="uml:Class" xmi:id="_7K-JkHyQEeWMxelKhvei4w" name="A">
 <ownedAttribute xmi:type="uml:Property" xmi:id="_E-ZLcHyREeWMxelKhvei4w" name="a">
 <type xmi:type="uml:PrimitiveType"
href="pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml#Integer"/>
 </ownedAttribute>

11

 <ownedBehavior xmi:type="uml:StateMachine" xmi:id="_KWkLMHyrEeWABrIzManC4A"
name="StateMachine1">
 <region xmi:type="uml:Region" xmi:id="_RvMloHyrEeWABrIzManC4A" name="Region1">
 <transition xmi:type="uml:Transition" xmi:id="_ZBkAAHyrEeWABrIzManC4A"
source="_Xje4cHyrEeWABrIzManC4A" target="_YAtnAHyrEeWABrIzManC4A"/>
 <subvertex xmi:type="uml:Pseudostate" xmi:id="_Xje4cHyrEeWABrIzManC4A" name="Initial1"/>
 <subvertex xmi:type="uml:State" xmi:id="_YAtnAHyrEeWABrIzManC4A" name="State1">
 <entry xmi:type="uml:Activity" href="example_activity.uml#_kDgDcHyrEeWABrIzManC4A"/>
 </subvertex>
 </region>
 </ownedBehavior>
 <ownedOperation xmi:type="uml:Operation" xmi:id="_KI0B4HyREeWMxelKhvei4w" name="f">
 <method xmi:type="uml:Activity" href="example_activity.uml#_l1Bi4HyUEeWMxelKhvei4w"/>
 </ownedOperation>
 </packagedElement>
 <packagedElement xmi:type="uml:Class" xmi:id="_HwUcUHyYEeWMxelKhvei4w" name="B"/>
 <packagedElement xmi:type="uml:Association" xmi:id="_JCIpgHyYEeWMxelKhvei4w" name="AB"
memberEnd="_JCIpgXyYEeWMxelKhvei4w _JCICcHyYEeWMxelKhvei4w"
navigableOwnedEnd="_JCICcHyYEeWMxelKhvei4w _JCIpgXyYEeWMxelKhvei4w">
 <ownedEnd xmi:type="uml:Property" xmi:id="_JCIpgXyYEeWMxelKhvei4w" name="a" type="_7K-
JkHyQEeWMxelKhvei4w" association="_JCIpgHyYEeWMxelKhvei4w">
 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="_JCIpgnyYEeWMxelKhvei4w" value="1"/>
 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="_JCIpg3yYEeWMxelKhvei4w"
value="1"/>
 </ownedEnd>
 <ownedEnd xmi:type="uml:Property" xmi:id="_JCICcHyYEeWMxelKhvei4w" name="b"
type="_HwUcUHyYEeWMxelKhvei4w" association="_JCIpgHyYEeWMxelKhvei4w">
 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="_JCICcXyYEeWMxelKhvei4w" value="1"/>
 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="_JCICcnyYEeWMxelKhvei4w"
value="1"/>
 </ownedEnd>
 </packagedElement>
</uml:Model>

example_activity.uml, storing the two activities referenced from the structure above:

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="20131001" xmlns:xmi="http://www.omg.org/spec/XMI/20131001"
xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML" xmi:id="_d8H-4HySEeWMxelKhvei4w"
name="example_activity">
 <packagedElement xmi:type="uml:Activity" xmi:id="_l1Bi4HyUEeWMxelKhvei4w" name="Activity1">
 <specification xmi:type="uml:Operation"
href="example_structure.uml#_KI0B4HyREeWMxelKhvei4w"/>
 </packagedElement>
 <packagedElement xmi:type="uml:Activity" xmi:id="_kDgDcHyrEeWABrIzManC4A"
name="EntryActivity">
 </packagedElement>

12

</uml:Model>

The syntax of referencing an entity stored in another model is highlighted in red.

When opening the first model in Papyrus, the second model is not loaded automatically, only if the user

navigates to a model entity in the referenced model. We have verified this lazy loading behavior by

removing read permission from the second model and experimenting in Papyrus to see which action

triggers the read error.

Considering the results of this and the previous section, the proposal is to keep the activities in separate

models, one such model per class. The structure of the model can be kept in one model (except for

really huge models where separation of the structure could be done on package basis). The models with

the activities are not even needed for visualization purposes and to navigate in the structure of the

visual model. These heavy-weight models should only be generated if the resulting UML model will be

used as input to the code generator.

Pro:

 Fully standards-based.

 Scales better. (To be confirmed by changing the txtUML model export function to work this

way.)

 No need for parsing on the code generator side.

Con:

 UML activities are verbose representation.

5.4 Custom metamodel for activities

It is also possible to create a custom metamodel for activities. When generating the EMF-UML2 model

from the textual model, this metamodel can be populated to store the action code snippets of the

model. These instance models can also reference elements from the EMF-UML2 model.

This solution is a variant of the previous one, but uses custom metamodel for action code instead of

UML activities.

Pro:

 Custom metamodel can be less verbose.

 No need for parsing on the code generator side.

Con:

 Not fully standards based.

