
Model-level Execution
Preliminary Architecture Evaluation

István Gansperger, Róbert Kitlei, Gergely Dévai, Máté Karácsony,
Gábor Ferenc Kovács, Tamás Kozsik, Boldizsár Németh, Attila Ulbert

ELTE-Soft Nonprofit Ltd.

May, 2015

1

1 Contents
1 Introduction .. 1

2 Architecture summary .. 2

2.1 High-level view .. 2

2.2 Translation Chain with IncQuery... 3

2.3 Translation Chain with Java Queries ... 4

3 Code Size ... 5

4 Memory Consumption Experiments ... 6

1 Introduction

The purpose of this document is to provide preliminary scalability results on the Model Executor
architecture.

2

2 Architecture summary

2.1 High-level view

The user creates EMF-UML2 models via Papyrus. The model changes are propagated through the
translation chain to create Java source files that are compiled to class files. When model execution is
initiated, a Java Virtual Machine is instantiated to load these class files in and to start execution. During
interactive model execution, the user is exposed to the Moka user interface. Moka breakpoints and
state machine animation is implemented by Java breakpoints that are set via the Java Debug Interface.

In addition to Eclipse integration, a command line interface is also provided that uses the same
translation chain (but in non-incremental way) and runs the model without involving the Java Debug
Interface.

3

2.2 Translation Chain with IncQuery

The model change events are propagated to IncQuery that updates the query results and creates change
notifications. These notifications are handled by setting dirty flags (changed/new/deleted flags) on (to
be) generated Java files. When translation is triggered (currently at model save), all dirty files are
(re)generated by first building temporary translation models (on a per file basis) using the query results.
The translation models are turned to Java text via Xtend templates and debug symbols are also
generated.

4

2.3 Translation Chain with Java Queries

In this setup, the change notifications from the model are directly consumed by the module maintaining
the dirty flags. On model save, all dirty files are regenerated by using model queries implemented in Java
and the same translation models described in the previous section.

5

3 Code Size

Code size was measured by nonempty lines of code. Meta-models are currently small. Their sizes were
measured by the number of XML lines to keep it simple and to increase their weight to express the
intellectual work needed.

 Java Xtend IncQuery Messages Model Plugin SUM
3pp 66 66
cli 861 74 935
filemanager 192 10 202
ide 3832 170 177 4179
m2m.logic 1937 17 1954
m2m.metamodel 188 77 265
m2t.java 11 442 16 469
m2t.smap.emf 281 11 292
m2t.smap.xtend 439 209 13 661
runtime 864 12 876
uml.alf 48 80 11 139
uml.incquery 12 134 34 180
SUM 8477 731 134 244 188 444

Breaking down the sums according to the main architectural modules, we get the following figures:

Eclipse+Moka integration 3779
Command line 935
Translation chain 4062
Runtime 876
Debug symbol generation 500

Eclipse+Moka
integration

Command line

Translation chain

Runtime

6

4 Memory Consumption Experiments

The memory consumption experiments described in this section were run on a standard Ericsson laptop
with Windows 7. The Model Executor plugin was installed in Eclipse (rather than starting an inner
eclipse) to be able to simulate end-user environment. Memory consumption measurements are based
on what the operating system reported on the JVM running Eclipse, to be non-intrusive.

4.1 Project cost

An Eclipse instance with zero opened projects costs ~300 MB in the configuration used. The following
table shows that the xUML-RT project causes ~85 MB overhead compared to a Papyrus project. This is
due to the Java nature (~60 MB) and the executor runtime JARs (~25 MB).

 MB
Papyrus project 326
Java project 388
Java project with executor runtime JARs 413
xUML-RT project 411

4.2 Translation cost

The following table shows memory consumption at different stages of using a project, in case of xUML-
RT project with or without IncQuery. The Java project, in which case the generated Java sources of the
previous two projects are added manually, is used as a reference to see how much of the used memory
actually belongs to Java compilation.

Each of the models that are copied into and deleted from the model contains a single class with a state
machine of 9, 100 and 1000 states and the same number of transitions respectively. The memory
consumption of most of the steps is measured after it became stable after garbage collection, except
the translation steps, where the peak memory consumption is relevant.

Action xUML-RT project -
IncQuery (MB)

xUML-RT project -
Java query (MB)

Java project with
Java code manually

added (MB)
open Eclipse (stable) 306 309 307
open project (stable) 411 410 413
translation sm9 (peak) 491 485 459
delete sm9 (stable) 468 461 423
translation sm100 (peak) 495 484 464
delete sm100 (stable) 477 468 425

7

translation sm1000 (peak) 524 511 461
delete sm1000 (stable) 492 481 434

The results show that the memory cost of the translation is varies between 75-115 MB, of which 45-50
MB is consumed by Java compilation and the rest is due to the model-to-Java translation. The cost of
IncQuery in this setup was 5-15 MB.

5 Runtime Experiments

The following table shows running times in milliseconds of the translation of state machines of different
sizes. The first one contains 9 states, 9 transitions and an entry action with 9 send statements. The other
two state machines are of the same structure with 100-100-100 and 1000-1000-1000 elements
respectively. The model executor version with IncQuery was used for this experiment.

Java
gen Full

Java
gen Full

Java
gen Full

9 states 100 states 1000 states
copy model 4165 - copy model 968 - copy model 4024 -

rebuild 968 1030 rebuild 951 1014 rebuild 3183 3245
rebuild 811 889 rebuild 764 842 rebuild 3556 3603
rebuild 499 561 rebuild 608 655 rebuild 3869 3931
rebuild 406 453 rebuild 624 687 rebuild 2808 2854

change state 18283 18283 change state 983 1014 change state 4442 4489
change state 639 655 change state 1264 1280 change state 4973 4988
change state 671 702 change state 702 733 change state 5880 5895

change
action 639 655

change
action 702 718

change
action 1669 1685

change
action 609 640

change
action 702 718

change
action 1232 1248

change
action 780 858

change
action 514 530

change
action 1669 1669

The “Java gen” column shows the running times from the startup of the translation process (events
triggered by saving the model or a project build) to the last Java file written on the disk. In addition to
this, the “Full” column also includes the time of compilation to class files and “patching” those with
debugging symbols. There is only a small difference between the two columns. The reason for this is
that JDT starts the Java compilation on separate threads as soon as the first generated Java file appears.

The execution times are measured throughout the following actions:

8

• “copy model”: Add the model into the empty project and translate it for the first time. (The “full”
column is empty here due to a bug in the executor version used for the measurements.)

• “rebuild”: Clean and rebuild of the project.
• “change state”: Changing the name of the state. This triggers the re-generation of the full region, so

this is almost equivalent to full rebuild.
• “change action”: A (new) entry action, consisting of only a couple of send instructions, is modified.

This triggers the regeneration of a single, small Java file.

	1 Introduction
	2 Architecture summary
	2.1 High-level view
	2.2 Translation Chain with IncQuery
	2.3 Translation Chain with Java Queries

	3 Code Size
	4 Memory Consumption Experiments
	4.1 Project cost
	4.2 Translation cost

	5 Runtime Experiments

