
Evaluation of Open Source
Model Interpreters

István Gansperger1, Máté Karácsony2, Róbert Kitlei1, Gábor Ferenc Kovács1,
Boldizsár Németh1, Tamás Kozsik1, Sándor Sike1, Ádám Tarcsi1, Gergely Dévai2

1ELTE-Soft Nonprofit Ltd.

2Ericsson

December, 2014

1

1 Contents

1 Introduction .. 1

2 Open Source Model Interpreters .. 1

1.1 ALF and fUML reference implementations ... 1

1.2 Moka ... 4

1.3 MoliZ ... 7

1.4 Topcased ... 9

1.5 Yakindu .. 12

1.6 AutoFocus3 ... 15

2 Conclusions ... 17

1 Introduction

This document evaluates available open source model interpreters based on their specific features,
deficiencies, compatibility with other tools and modeling standards and their compliance level to the
Ericsson requirements against the future model level execution solution. Some specifics about their
implementations are also highlighted and code or solution reuse possibilities are discussed.

2 Open Source Model Interpreters

1.1 ALF and fUML reference implementations

1.1.1 Introduction
ALF is an action language with concrete syntax for foundational UML (fUML), which specifies the
semantics for an executable subset of UML. The reference implementations of these specifications are
written as interpreters in Java and can be downloaded from mds artifact repository.

1.1.2 Specifics
The following are true for both interpreters:

• Standalone command line application
• Single-threaded execution
• Reading models from textual representation, even from multiple files
• Generating textual execution traces

http://www.omg.org/spec/ALF/
http://www.omg.org/spec/FUML/
http://lib.modeldriven.org/MDLibrary/trunk/Applications/

2

• They provide the maximal level of conformance for each specification
(L3 for fUML and extended conformance for ALF)

• Very accurate, low level simulation of the execution semantics

1.1.3 Deficiencies
I was unable to start the standalone fUML interpreter with a custom model file, because usually a
NullPointerException was thrown. However, the ALF interpreter seems to work correctly, and it uses the
same execution engine, so probably the model files were wrong. As this is a single-threaded,
semantically accurate implementation, it may have performance problems with huge models. There is
no visual feedback during the interpretation, only an execution trace is generated.

1.1.4 Compatibility
Both interpreters are using standard formats, namely XMI and ALF files. This provides great
interoperability with other tools.

1.1.5 Feature compliance
As the ALF interpreter uses fUML interpreter for execution, only the latter is analyzed in the table below.

Requirement fUML reference implementation

High Priority Requirements

Model interpretation Yes. Simulates semantics according to the specification.

Interactivity
No. The execution engine cannot be influenced directly, but
when an activity reads or writes the standard input or output
streams, it is handled correctly.

Mass execution
Yes. Possible by starting independent interpreter processes
e.g. from a batch file.

Scalability, performance
The implementation serializes all activity to a single thread.
As lot of objects are created and destroyed during activity
simulations, it is expected to perform poorly.

Visual feedback No. Only a textual execution trace is generated.

Test coverage statistics
No direct coverage on states or action language, but it may
be able to be restored from the execution trace.

Deterministic &
nondeterministic mode

Only deterministic mode is available, and the execution order
cannot be controlled. However, the built-in strategies can
easily be changed in the source code.

Timers No, because there are no timed events in fUML at all.

3

Connection to native code No

Tracing Yes, as it is the primary output of the interpretation.

Medium Priority Requirements

Model debugging session No

Test and production model
elements

No

Possibility to influence
simulation speed

No

Low Priority Requirements

Conditional breakpoints No

Profiling: number of running
instances etc.

No

Connection to debuggers of
implementation languages

No

Persisting/loading model
execution state

No

1.1.6 Architecture
The ALF interpreter uses JavaCC for parsing. It contains the whole fUML and ALF description in XMI
format, and also as Java interfaces. Mapping from ALF abstract syntax to fUML behavioral models is also
provided. Not only behavioral, but also structural fUML elements could be created in the input files as
the interpreter implements the maximal, extended conformance level of ALF. The interpretation is done
according to the following steps:

1. Parse input files in ALF concrete syntax into object instances of abstract syntax
2. Map the abstract syntax to the corresponding fUML representation
3. Execute the fUML interpreter on the resulting model

The fUML interpreter reads the models from XMI files using a streaming XML parser. Input elements are
decoded into model objects and stored in a common object repository. The source tree includes the
whole fUML specification as XMI files, with UML infrastructure, superstructure, and the foundational
library. The interpretation is done according to the following steps:

1. Input files are parsed with a streaming XML parser
2. Decoded model elements are stored in the repository

https://javacc.java.net/
http://www.omg.org/spec/XMI/
https://sjsxp.java.net/

4

3. When the selected class or behavior has been found in the repository, its execution starts
4. An execution queue is used to serialize all further activities
5. Simple built-in strategies are used to make deterministic choices where needed

The source code of both interpreters is well-organized and relatively easy to understand. Examples and
test suites are also provided with each project. Build systems are based on Apache Ant.

1.1.7 Licensing
The ALF interpreter uses a GPLv3 license, but some of its dependencies are published under an Apache
license. However, the fUML interpreter has more complicated licensing. For more information, see the
following files:

• http://lib.modeldriven.org/MDLibrary/trunk/Applications/fUML-Reference-
Implementation/trunk/Licensing-Information.txt

• http://lib.modeldriven.org/MDLibrary/trunk/Applications/Alf-Reference-
Implementation/dist/LICENSING.txt

1.1.8 Reuse possibilities
These interpreters can be used to validate other implementations against them. A lot of model classes
and interfaces can be reused from each code base. XMI models and ALF files are also reusable for testing
purposes. It may be possible to evolve these solutions into multi-threaded implementations.

1.2 Moka

1.2.1 Introduction to Moka
Moka is an open source tool based on the Eclipse Modeling Framework (EMF) and distributed as an
extra package for the Papyrus editor. It provides model execution with graphical animations for fUML
actions. It is being developed by CEA (Commissariat à l’énergie atomique et aux énergies alternatives).

• Git repository of Moka at eclipse.org

• Short tutorial of Moka

1.2.2 Specifics of Moka
Moka allows the user to execute, debug and visualize Activity Diagrams.

• It allows breakpoints to be placed on actions, and the user can inspect the context when
execution is suspended.

• Execution speed (how fast simulation proceeds to the next step) can be controlled via a slider.

• There are three modes of execution: one is single-threaded and fUML based, the other two are
PSCS based (single-threaded and multi-threaded). According to the developers, the multi-
threaded model uses one thread per active object.

http://lib.modeldriven.org/MDLibrary/trunk/Applications/fUML-Reference-Implementation/trunk/Licensing-Information.txt
http://lib.modeldriven.org/MDLibrary/trunk/Applications/fUML-Reference-Implementation/trunk/Licensing-Information.txt
http://lib.modeldriven.org/MDLibrary/trunk/Applications/Alf-Reference-Implementation/dist/LICENSING.txt
http://lib.modeldriven.org/MDLibrary/trunk/Applications/Alf-Reference-Implementation/dist/LICENSING.txt
http://www.cea.fr/
http://git.eclipse.org/c/papyrus/org.eclipse.papyrus.git/tree/sandbox/Moka
http://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution

5

1.2.3 Deficiencies
• In general, the system is quite slow. The Moka Execution Engine takes a couple of seconds to

start up each time a debugging session is started, and execution speed is comparable to
debugging a native Java program with a conditional breakpoint enabled.

• Visual input and editing of the source code is clumsy. It takes several clicks to select the name of
a data type, even if the user knows exactly where to look. Moreover, search functionality in
many input boxes is quite slow, taking several seconds to complete.

• In the current release, it is very hard to find out what sort of elements are placed on the Activity
Diagrams. A fairly recent commit fixes this by adding a tooltip, and is expected to be part of the
next release.

• Documentation is severely lacking.

1.2.4 Compatibility
Moka is based on Papyrus therefore it is Ecore-based UML2 compliant.

1.2.5 Feature compliance

Requirement Moka

High Priority Requirements

Model
interpretation

Yes.

Interactivity Yes, breakpoints on actions in Activity diagrams, and possibly others, too.

Mass execution
Probably possible to batch execute test cases from command line
(probably using org.eclipse.papyrus.moka.debug.MokaProcess), but
primarily designed for interactive use.

Scalability,
performance

Multi-threaded mode (PSCS -- Precise Semantics of UML Composite
Structures, an extension of fUML) runs a thread for each object; can
probably scale up to 1000s of objects. Not measured yet.

Visual feedback GUI diagrams with animations: Activity, State, possibly more.

Test coverage
statistics

No support.

Deterministic &
nondeterministic

Two single threaded modes (fUML and PSCS) and one PSCS
multithreaded mode. Execution within active objects is deterministic.

6

mode

Timers

The animation speed can be changed. Also, there is a TimeObservation in
the class diagram, and transitions can be guarded by various conditions
with time related names (Duration, DurationInterval, TimeExpression,
TimeInterval).

Connection to
native code

The multithreaded PSCS engine is implemented in
org.eclipse.papyrus.moka.async.fuml.FUMLAsyncExecutionEngine, and
the single threaded one in
org.eclipse.papyrus.moka.composites.CompositeStructuresExecutionEngi
ne. The former subclasses the latter; they make heavy use of the
packages org.eclipse.papyrus.moka.async.fuml.Semantics,
org.eclipse.papyrus.moka.async.fuml.Semantics and
org.eclipse.papyrus.moka.fuml.Semantics, and they provide their
functionality in Java. The mechanism, if replaced by a suitable
implementation, would most probably support execution in other
languages. Also, when creating a FunctionBehavior, the choices C, C++,
JAVA, Natural language, OCL and Alf are present.

Tracing

No apparent support by Moka, however, Papyrus can activate traces on
various elements (actions, classes, operations etc.). Note that both
Papyrus and Moka feature the concept of a breakpoint (and both can be
set on an action, for example), but they are not playing nice with each
other: if only a Papyrus breakpoint is set, execution does not stop when it
is reached.

Medium Priority Requirements

Model debugging
session

Signals, events, instances etc. cannot be added by hand once the session
is started, but this might be possible using some code snippets (or maybe
through sockets).

Test and
production
model elements

-

Possibility to
influence
simulation speed

No support.

Visual
representation of
the simulation

A slider can adjust the time (milliseconds) between animation steps.

7

Low Priority Requirements

Conditional
breakpoints

No, conditions on breakpoints (other than them being on/off) are not
supported, not even a hit counter.

Profiling:
number of
running
instances etc.

No support.

Connection to
debuggers of
implementation
languages

No support.

Persisting/loadin
g model
execution state

No support.

1.2.6 Architecture
Moka uses the facilities of Papyrus to read the input model. It stores its runtime configuration as key-
value pairs, and it registers a MokaProcess (a specialisation of an org.eclipse.debug.core.model.IProcess)
in the system for a debug launch. It uses the GUI features of the Papyrus graphical elements to show any
changes on the UI. According to one of the developers, action transitions are executed in the order that
they are present in the model, even if the multi-threaded model is being used.

1.2.7 Licensing
Eclipse Public License 1.0 (EPL)

1.2.8 Reuse possibilities
Moka can be considered a reference implementation of the PSCS model (whose beta description is
available here), and it shares its codebase with the fUML/Alf reference implementation. Since the full
semantics of the model are implemented in the code, Moka can serve as a validator for our project,
however, its general structure is probably too inefficient for us to closely follow. More directly usable is
a middle layer of engine implemented in Moka, which serves as an event dispatcher between the
debugger architecture in Eclipse and an execution engine. Since this is a thin layer, it is expected to be
possible to reuse it with little or no modification. The way the debug target communicates to the
execution engine, through sockets, should also be considered for reuse, and we can also examine how
the Papyrus graphical elements are accessed and manipulated.

1.3 MoliZ

1.3.1 Introduction to MoliZ
Moliz is a tool for interpreting activity diagrams in Eclipse. It supports visual debugging.

http://de.wikipedia.org/wiki/Eclipse_Public_License
http://www.omg.org/spec/PSCS/Current

8

Information about Moliz:

• Project homepage
• Moliz on Google Code
• Model testing example

1.3.2 Specifics of MoliZ
• Moliz has a sister project xMof, that is a metamodeling language integrating fUML with MOF

1.3.3 Deficiencies
• It crashes with NullPointerException on running any examples included.
• It is not documented at all.
• In practice the development stopped in 2013.

1.3.4 Compatibility
Moliz converts the Ecore UML2 models into fUML to execute them.

1.3.5 Feature compliance
Requirement MoliZ

High Priority Requirements

Model interpretation Yes

Interactivity Yes, breakpoints are supported

Mass execution No (this is delegated to xMOF)

Scalability, performance Unknown

Visual feedback
Yes, it does highlight the active
action.

Test coverage statistics No

Deterministic & nondeterministic mode Unknown

Timers Unknown

Connection to native code Unknown

Tracing It has a console logger

Medium Priority Requirements

Model debugging session Unknown

http://www.modelexecution.org/
https://code.google.com/a/eclipselabs.org/p/moliz/
http://www.modelexecution.org/?page_id=544

9

Test and production model elements No

Possibility to influence simulation speed No

Visual representation of the simulation Unknown

Low Priority Requirements

Conditional breakpoints Unknown

Profiling: number of running instances etc. No

Connection to debuggers of implementation
languages

No

Persisting/loading model execution state Unknown

1.3.6 Architecture
It has its own Ecore-based model representation that closely resembles the representation in the
reference implementation. The representation of the model elements and the execution of them are
separated. The execution engine also seems to be an improved version of the one implemented in the
reference implementation. It does represent every value in a dynamically typed way. The execution of
the model is sequential and deterministic.

1.3.7 Licensing
MoliZ is published under the Eclipse Public License 1.0.

1.3.8 Reuse possibilities
We could copy parts of the representation of the fUML models (org.modelexecution.fuml project) and
change them to our needs. We could also reuse code from the execution of the model
(org.modelexecution.fumldebug.core project) if we implement a classic interpreter. If we reuse code
from this project we should also check what changed compared to the reference implementation.

Some useful architectural patterns in the code are:

• Running the interpreter generates execution traces. Test cases are evaluated as passing or
failing based on their traces.

1.4 Topcased

1.4.1 Introduction to Topcased
Topcased is a set of plugins for the Eclipse platform that is mainly aimed at the realization of critical
embedded systems. It uses Papyrus for model editing and adds a simulation workflow on top of the

http://www.eclipse.org/legal/epl-v10.html

10

models. The project is now under migration to the PolarSys platform which does not view model
interpretation a first priority goal. Their plan is to use Moka for that purpose in the long run. The
relevant part of the software seems to be abandoned and lacks documentation.

• Official Topcased page
• Mailing list

1.4.2 Specifics of Topcased
Topcased was rather ambitious in setting its goals but the project could not realize many of the planned
features. The user interface exposes unimplemented functionalities and bugs are not rare to come along
either.

- It uses the Papyrus editor so the software is Ecore-based UML2 compliant.
- Single-threaded execution
- Signals are kept in the target-object’s event queue and are processed sequentially
- Easy to follow simulation, standard debugger functionality (but no breakpoints)
- Mainly focused on using visual representation but the models can be written by hand (for

example as Java code)
- Uses visual activity diagrams for implementing program logic

1.4.3 Deficiencies
- Topcased’s main drawback is that it is only usable for toy-sized projects. Under heavy or even

medium load it breaks very quickly.
- It only has visual simulation, the applications cannot be run without the UI or the Eclipse

platform (though the visual representation of the models can be turned off which might reduce
the UI overhead.

- The simulation does not offer any way of testing tracing or reasonable debugging; one can only
step through the states of the objects sending signals and triggering timers.

- Although there is an option to adjust the time when starting the simulation this feature does not
seem to be implemented.

- Simulations cannot be automated: init signals need to be included by hand.
- Signals cannot be easily sent from outside of Topcased (it’s possible to create a simple bridge as

Eclipse plugin).
- There is no way to interface with different languages.
- The UML save and replay functionality is not implemented but is present on the UI.

1.4.4 Compatibility
Topcased is based on Papyurs therefore it is Ecore-based UML2 compliant.

1.4.5 Feature compliance

Requirement Topcased

http://www.topcased.org/
http://lists.gforge.enseeiht.fr/pipermail/topcased-users/

11

High Priority Requirements

Model interpretation Yes

Interactivity
Yes. Standard debugger stepping features. Can trigger
events and timers. No breakpoints.

Mass execution
Only possible by running multiple Eclipse instances which is
highly impractical.

Scalability, performance Doesn’t scale beyond 20 active instances.

Visual feedback Activity and state charts are visualized.

Test coverage statistics There are no means to run tests within Topcased.

Deterministic &
nondeterministic mode

Single-threaded model so only deterministic mode. Signals
are sent in order and processed from a queue.

Timers
Time cannot be scaled but there are timers which can be
triggered by hand.

Connection to native code
There is no way to interface with native code from Topcased.
It is possible to send signals from the outside but it is not
within Topcased’s scope and requires extra effort.

Tracing
There should be a feature to trace and log the simulation but
it is not implemented.

Medium Priority Requirements

Model debugging session
Yes, it’s possible to affect the execution from the debugger
to some extent.

Test and production model
elements

No

Possibility to influence
simulation speed

No

Visual representation of the
simulation

Yes

Low Priority Requirements

Conditional breakpoints No breakpoints at all.

12

Profiling: number of running
instances etc.

No support, but other Eclipse plugins may be used

Connection to debuggers of
implementation languages

No support, but other Eclipse plugins may be used

Persisting/loading model
execution state

Not implemented but present.

1.4.6 Architecture
The input for the simulation is a Papyrus model. The standard Eclipse debugging framework is used to
interact with the model. The simulation will render state changes on the Papyrus model.

Topcased does not generate code, it has a simple, sequential interpreter written in Java embedded in
Eclipse. It has a single-threaded model and uses Eclipse's JobManager class to schedule Jobs. When
transitioning it will wait for the last Job to finish then overwrite it with the next step changing the state.
There are separate jobs for each debugger command which operate on the state of the model. It uses
the Eclipse debugging framework to implement this functionality.

1.4.7 Licensing
Eclipse Public License 1.0 (EPL)

1.4.8 Reuse possibilities
It may be possible to reuse the debugger architecture to some extent. It's very close to what we have
envisioned apart from the missing breakpoints feature. Note however, that the way our project will
communicate with Eclipse heavily depends on the method of execution (classic interpreter vs. code
generation).

1.5 Yakindu

1.5.1 Introduction to Yakindu
Yakindu Statechart Tools (SCT) is a statechart diagram modeler for Eclipse. Can edit diagrams, interpret
them and generate Java, C and C++ code from them.

Useful sources of information about Yakindu:

• Yakindu home page
• Yakindu on Google Code
• Yakindu User Group
• Blog of Andreas Mülder

1.5.2 Specifics of Yakindu
Yakindu has some interesting features that help editing diagrams. As Yakindu is restricted to statechart
modeling, it is simpler and more user friendly than other products.

http://de.wikipedia.org/wiki/Eclipse_Public_License
http://statecharts.org/index.html
https://code.google.com/a/eclipselabs.org/p/yakindu/
https://groups.google.com/forum/#!topic/yakindu-user/v5H4ftU3_5o
http://muelder.blogspot.hu/

13

• A subdiagram is a statechart embedded in a single state.
• Support for defining orthogonal states
• Submachine states are subdiagrams reusable in multiple states
• Statechart refactorings to restructure diagrams
• Fully integrated content assist on both textual and graphical views

Yakindu uses cycle based execution semantics: Everything is synchronized to a global clock with an
indivisible time unit. This is considerably different from event based semantics envisioned for executable
UML.

1.5.3 Deficiencies
There are major drawbacks of using Yakindu that limit it’s usability in an industrial development.

• Single purpose tool, can only model statecharts
• Cannot run multiple instances of an active object defined by a statechart
• Yakindu is not documented well. There is a tutorial that shows the basic functionality of the

tool, but it can only be mastered by trial and error.
• In some corner cases the behavior is peculiar:

o Triggering timing events can be done manually, but doing so does not make global time
progress and therefore results in an incoherent state.

o If more than one transition could happen, the firstly drawn edge will be taken.

1.5.4 Compatibility
The diagram/model cannot be imported from or exported to other formats. But it is an extension of the
eclipse GMF format, so conversion tools would be relatively easy to implement.

1.5.5 Feature compliance

Requirement Yakindu

High Priority Requirements

Model interpretation Yes

Interactivity No (breakpoints are a promised feature)

Mass execution No (testing is a promised feature)

Scalability, performance NA (cannot run multiple instances, so it is not relevant)

Visual feedback Yes. Statechart simulation is visualized

Test coverage statistics No coverage on states or action language.

Deterministic & nondeterministic Only deterministic mode is available, and the execution

14

mode order cannot be controlled.

Timers
Time cannot be simulated. Timer events can be fired at
any time, but this disrupts the timing of the whole
model.

Connection to native code
Yes. Only Java is supported. Can call any function if it is
declared as an operation.

Tracing
Yes. No explicit support for tracing, but can be done with
operations.

Medium Priority Requirements

Model debugging session Yes, events can be manually fired and values altered.

Test and production model
elements

No

Possibility to influence simulation
speed

No

Visual representation of the
simulation

Yes

Low Priority Requirements

Conditional breakpoints No (promised feature but not implemented yet)

Profiling: number of running
instances etc.

No support, but other Eclipse plugins may be used

Connection to debuggers of
implementation languages

No support, but other Eclipse plugins may be used

Persisting/loading model
execution state

No (promised simulation snapshots feature is not
implemented yet)

1.5.6 Architecture
Yakindu uses an XML format for storing diagrams. It is based on the eclipse GMF, but extends it with its
own notations (for example, to define the environment the statechart operates in).

SExec code is generated from the model, and it is executed or translated to a target language. SExec is a
deeply embedded DSL in Java. SExec is interpreted by a traditional interpreter.

15

During execution, the diagrams are rendered as SWT images and the debugger will load them.

The interpretation code is sequential. For all cycles, the execution engine traverses all the events that
are raised and handles them.

1.5.7 Licensing
Eclipse Public License - v 1.0

1.5.8 Reuse possibilities
Yakindu is not ready for use in serious development projects. It can only simulate singleton objects so
complex situations with multiple objects of different kinds cannot be simulated. The cost of introducing
Yakindu to a project takes all the benefits of using it.

It has some architectural decisions that are likely to be useful for us. For example, converting the model
to an internal representation optimized for interpretation may become useful. In the implementation of
Yakindu, most classes have a separated interface. For every implementation class there is an interface
that is implemented by the class. The event-handling of the application is organized into Notification
chains that collect all the changes in the representation. Notification chains capture the effect of the
property change events. This is a simple mechanism that allows changes in the DOM (representation) to
trigger additional changes.

Simulation snapshots are not implemented, but planned in Yakindu, but they would be even more useful
to our project. Yakindu operations (calls to native Java methods) are also useful in our project, but it
could be generalized to enable the execution of C++ or C subprograms as well as Java methods.

1.6 AutoFocus3

1.6.1 Introduction
AutoFocus3 is a model based development tool for distributed, reactive, embedded software systems
developed by Fortiss, an institute associated with the Technical University of Munich. Its source code is
available for access to external developers.

1.6.2 Specifics
AutoFocus3 is a large tool that contains a vast number of sub-modules.

• It comes integrated with Eclipse, provides its own GUI
• Uses an own, Ecore-based model
• Components’ behavior is described either by code or by automata
• Execution is event based, executed on a single thread
• Can simulate the passing of a given amount of time
• Contains both interpreter and code generation, and tools for other purposes such as formal

verification

http://af3.fortiss.org/
https://af3-developer.fortiss.org/projects/autofocus3/wiki/Developer_Installation_Eclipse_44_Luna_Release_June_2014_%28experimental%29

16

1.6.3 Deficiencies
The tool works out of the box (it comes with a packaged Eclipse), and no deficiencies became apparent
running it, although its documentation mentions a number of issues.

1.6.4 Compatibility
It uses an Ecore-based model, therefore it can be accessed using standard tools. The model is not UML2
nor fUML but their af3-model.

1.6.5 Feature compliance
Requirement AutoFocus3

High Priority Requirements

Model interpretation Yes

Interactivity
Yes. The user can set breakpoints, step-by-step execution,
time-based skipping and manual event triggering is available.

Mass execution AutoFocus3 does not seem to be designed with that in mind.

Scalability, performance
The implementation is single-threaded and communication
and messages are exchanged synchronously with respect to a
global, discrete time base (according to this source).

Visual feedback
Yes, the GUI shows all components in great detail. It is even
possible to devise a graphical interface for the modelled
system in the tool.

Test coverage statistics Supports state coverage and transition coverage.

Deterministic &
nondeterministic mode

It has analysis facilities for nondeterminism.

Timers
As mentioned above, timed transitions are available, and it is
also possible to manually skip time.

Connection to native code The behavior of components can be described by code.

Tracing Yes.

Medium Priority Requirements

Model debugging session
Yes, with lots of features like manual event triggering, editing
the program state etc.

Test and production model -

http://ceur-ws.org/Vol-1129/paper33.pdf

17

elements

Possibility to influence
simulation speed

Yes, time skipping is available.

Low Priority Requirements

Conditional breakpoints No

Profiling: number of running
instances etc.

No

Connection to debuggers of
implementation languages

No

Persisting/loading model
execution state

No

1.6.6 Architecture
AutoFocus3 uses an own model and user interface within Eclipse. It uses a thread to run the execution in
the background step by step in a sequential way.

1.6.7 Licensing
Although it lists the licenses of some of the tools it uses, it is not explicitly stated what license
AutoFocus3 itself falls under.

1.6.8 Reuse possibilities
Since AutoFocus3 uses a model of its own, direct reuse of the model related parts is probably
impossible. As it does not share its codebase with the other tools, it can be interesting to compare how
functionality similar to other tools is implemented here: perhaps some bits are more efficient in
AutoFocus3 than elsewhere. For state transitions, entry, transition and exit are visualized separately, we
might emulate this.

2 Conclusions

• All found open source solutions are far from fulfilling all requirements.
• All of them use classic interpreter technology. No code generation based interactive

executor/debugger has been found.
• Alf executor, Moliz and Moka all use the same fUML reference implementation. Topcased and

Yakindu have their own execution engines.
• Reuse possibilities:

18

o fUML & Alf:
These interpreters can be used to validate other implementations against them. A lot of
model classes and interfaces can be reused from each code base. XMI models and ALF
files are also reusable for testing purposes. It may be possible to evolve these solutions
into multi-threaded implementations.

o Moka:
The way the debug target communicates to the execution engine, through sockets,
should also be considered for reuse. A middle layer of engine is implemented in Moka,
which serves as an event dispatcher between the debugger architecture in Eclipse and
an execution engine. Since this is a thin layer, it is expected to be possible to reuse it
with little or no modification.

o Topcased:
It may be possible to reuse the debugger architecture to some extent. It's very close to
what we have envisioned apart from the missing breakpoints feature.

o Yakindu:
Converting the model to an internal representation optimized for interpretation may
become useful. Yakindu operations (calls to native Java methods) are also useful in our
project, but it could be generalized to enable the execution of C++ or C subprograms as
well as Java methods.

	1 Introduction
	2 Open Source Model Interpreters
	1.1 ALF and fUML reference implementations
	1.1.1 Introduction
	1.1.2 Specifics
	1.1.3 Deficiencies
	1.1.4 Compatibility
	1.1.5 Feature compliance
	1.1.6 Architecture
	1.1.7 Licensing
	1.1.8 Reuse possibilities

	1.2 Moka
	1.2.1 Introduction to Moka
	1.2.2 Specifics of Moka
	1.2.3 Deficiencies
	1.2.4 Compatibility
	1.2.5 Feature compliance
	1.2.6 Architecture
	1.2.7 Licensing
	1.2.8 Reuse possibilities

	1.3 MoliZ
	1.3.1 Introduction to MoliZ
	1.3.2 Specifics of MoliZ
	1.3.3 Deficiencies
	1.3.4 Compatibility
	1.3.5 Feature compliance
	1.3.6 Architecture
	1.3.7 Licensing
	1.3.8 Reuse possibilities

	1.4 Topcased
	1.4.1 Introduction to Topcased
	1.4.2 Specifics of Topcased
	1.4.3 Deficiencies
	1.4.4 Compatibility
	1.4.5 Feature compliance
	1.4.6 Architecture
	1.4.7 Licensing
	1.4.8 Reuse possibilities

	1.5 Yakindu
	1.5.1 Introduction to Yakindu
	1.5.2 Specifics of Yakindu
	1.5.3 Deficiencies
	1.5.4 Compatibility
	1.5.5 Feature compliance
	1.5.6 Architecture
	1.5.7 Licensing
	1.5.8 Reuse possibilities

	1.6 AutoFocus3
	1.6.1 Introduction
	1.6.2 Specifics
	1.6.3 Deficiencies
	1.6.4 Compatibility
	1.6.5 Feature compliance
	1.6.6 Architecture
	1.6.7 Licensing
	1.6.8 Reuse possibilities

	2 Conclusions

