
Model-level execution 
Case studies for architecture design 
 

 

 

 

 

 

 

István Gansperger1, Máté Karácsony2, Róbert Kitlei1, Gábor Ferenc Kovács1, 
Boldizsár Németh1, Tamás Kozsik1, Sándor Sike1, Ádám Tarcsi1, Gergely Dévai2 

 

1ELTE-Soft Nonprofit Ltd. 

2Ericsson 

 

December, 2014 

  



1 
 

1 Contents 
 

1 Introduction .......................................................................................................................................... 1 

2 Case Studies .......................................................................................................................................... 2 

1.1 Interpretation over EMF UML2 ..................................................................................................... 2 

1.2 Interpretation with transformation to own representation ......................................................... 2 

1.3 Interpretation over a custom representation fetched from EMF UML2, with basic ALF action 
code support and different levels of Just in Time compilation ................................................................ 3 

1.4 Interpreting UML diagrams with object instances running in parallel, sequentially and in a 
thread pool................................................................................................................................................ 4 

1.5 Compilation of UML2 model to Java without action code and debugging support ..................... 5 

1.6 Compilation of UML2 model to C without action code and debugging support .......................... 5 

1.7 Compilation of UML2 model to Java with Eclipse Debugging Framework support, without 
action code ................................................................................................................................................ 6 

1.8 Comparison of state machine and basic ALF action code generation to C++ and Java, without 
debugging support .................................................................................................................................... 7 

1.9 Compilation with EMF-IncQuery and the EMF UML2 API ............................................................ 9 

1.10 Scheduler Case Studies ............................................................................................................... 10 

1.11 Compilation of UML2 model to C code with different scheduling strategies, without debugging
 11 

1.12 Compilation of UML2 model and Alf code with nondeterministic and pure scheduling to C code 
without debugging .................................................................................................................................. 11 

1.13 Compilation of UML2 model to Java with action code, running as a Moka execution engine 
with Java Debug Interface support ......................................................................................................... 12 

2 Summary ............................................................................................................................................. 13 

 

1 Introduction 
 

In order to make well-founded design decisions for the implementation of a new model-level execution 
solution, a number of case studies were implemented and evaluated. This document summarizes these 
case studies and the findings they led to. 



2 
 

2 Case Studies 
 

1.1 Interpretation over EMF UML2 
 

• Directory name: interpreter-noDebug-javaUML2 
 

• Short description: Searches for signal events and a state machine region inside the input EMF UML2 
model. Generates given number of random events to drive the state machine region. Logs the 
processed events and visited states in memory and prints report afterwards. Measures execution 
time containing only the event processing and in-memory logging part. 
 

• Technologies used: Implemented in Java. Reads the model by the EMF UML2 API. 
• Results: No technical problems found. Measurement results on Ericsson managed workspace, HP 

EliteBook8540w, Intel Core i5 CPU @ 2.53 GHz, 4 GB RAM, 64 bit Windows 7: 
 
Execution time in ms. 10 events 100 events 1000000 events 
2 states + 2 transitions 46 44 1717 
10 states + 18 transitions 52 53 1934 
 
See the results at the “Interpretation with transformation to own representation” for comparison. 

1.2 Interpretation with transformation to own representation 
 

• Directory name: interpreter-noDebug-javaUML2vsOwnRepresentation 
 

• Short description: Searches for signal events and a state machine region inside the input EMF UML2 
model. Transforms the state machine into a state/event matrix optimized for interpretation. 
Generates given number of random events to drive the state machine region. Logs the processed 
events and visited states in memory and prints report afterwards. Measures execution time 
separately for the transformation and the event processing plus in-memory logging parts. 
 

• Technologies used: Implemented in Java. Reads the model by the EMF UML2 API. Uses a 2-
dimensional int array to store the state/event matrix. 
 

• Results: No technical problems found. Measurement results on Ericsson managed workspace, HP 
EliteBook8540w, Intel Core i5 CPU @ 2.53 GHz, 4 GB RAM, 64 bit Windows 7: 
 
Execution time in ms. Transformation 10 events 100 events 1000000 events 
2 states + 2 transitions 41 0 1 167 
10 states + 18 transitions 74 0 1 167 



3 
 

 
Comparing these with the results in section “Interpretation over EMF UML2” shows that around 10 
times speedup can be achieved when using a model representation optimized for interpretation. For 
hundreds of events there is no significant difference between the costs of interpretation over EMF 
UML2 and transformation + optimized interpretation. When increasing the number of events, the 
optimized solution gets considerably faster. 
 

1.3 Interpretation over a custom representation fetched from EMF UML2, 
with basic ALF action code support and different levels of Just in Time 
compilation 

 

• Directory names: 
o interpreter-noDebug-javaUML2-alf-ast 
o interpreter-noDebug-javaUML2-alf-ast-jit 
o interpreter-noDebug-javaUML2-alf-ast-jit-bytecode 

 
• Reuse: These case studies are reusing code from interpreter-noDebug-

javaUML2vsOwnRepresentation 
 

• Short description: The interpretation of state machine is semantically equivalent with the case study 
in “Interpretation with transformation to own representation”. It executes actions on state entry, 
exit and transition effects. Only the following basic ALF language elements are supported: 

o Primitive types: Boolean, Integer, Unlimited Natural, Real and String 
o Local variable declarations, referencing attributes of the context object (“this”) 
o Arithmetic operators: unary minus, +, -, *, /, % 
o Boolean operators: unary negation, &&, ||, ^ 
o Relational operators: ==, !=, <, <=, >, >= 
o Blocks, assignments and if-elseif-else statements 

The first version applies pure interpretation. The rest two works as the following. When an action 
needs to be executed at the first time, a new compilation work is added to an executor backed by a 
thread-pool. Until the compilation completes, an interpreter will execute the action code. After the 
compilation is done, the next invocation of the given action will be executed as compiled code. The 
second solution compiles ALF by its AST, and then it generates Java code from actions which are 
compiled with javac, and loaded back into the same process. The last case study works the same 
way, except it uses the Javassist library to compile Java code in-memory, directly to JVM bytecode. 
 

• Technologies used: Implemented in Java. Reads the model by the EMF UML2 API. Generates Java 
code using Java Emitter Templates. Reads and interprets ALF by its Xtext-generated AST. 
Compilation is done with javac and the Javassist library. 
 



4 
 

• Results: 
The reused Xtext grammar is left-factored, and very complicated in some cases. It was very hard and 
inefficient to implement even a basic interpreter on this representation. Direct compilation to JVM 
bytecode is more efficient than generating Java source and compiling it with javac, however this is a 
lot harder and more error-prone task as there is no real Java compiler in the process. 
For measurement results, see section 1.8. 

1.4 Interpreting UML diagrams with object instances running in parallel, 
sequentially and in a thread pool 

 

• Directory name: interpreter-threading 
 

• Short description: Interprets a basic diagram that simulates a client-server connection. N clients 
send M messages to the server and the server responds to the messages. Relevant experiments are: 
running each object instance in its own thread, running each transition sequentially and running 
them in a thread pool. The obvious drawback of the parallel execution is that the overhead of the 
synchronization between the state machines will be much higher than the benefit. We expect the 
thread pool to perform the best when we choose the pool size to be close to the number of physical 
processors. 
 

• Technologies used: The interpreter is written in Java. For the parallel execution we just use simple 
threads, the sequential execution is straightforward, and for the thread pool solution we chose the 
ThreadPool class introduced in java 7. 
 

• Results: The tests were run on a 24 core (12 physical) Intel CPU @ 2666.760 MHz and 2 GB of RAM 
on a Debian system. As we expected the thread pool performed the best out of the three but the 
performance gains are insignificant over the sequential experiment. When we have many instances 
(100+) the one-thread-per-object approach performs really slowly. 

Technical details 
(technologies used, task 
performed) 

Nr. of instances Nr. of transitions per 
instance 

Pool 
size 

Execution time 
(ms) 

sequential execution of state 
machines 700 1000 - 3237 

sequential execution of state 
machines 10000 1000 - 51481 

multi threaded execution (one 
thread per object) 700 1000 - 17680 

multi threaded execution (one 
thread per object) 10000 1000 - 310606 

multi threaded execution 
with ForkJoinPool 700 1000 10 3273 



5 
 

 

1.5 Compilation of UML2 model to Java without action code and debugging 
support 

 

• Directory name: compiler-noDebug-javaUML2 
 

• Reuse: This case study is reusing code from interpreter-noDebug-javaUML2 
 

• Short description: The behavior of execution is almost the same as in case of “Interpretation over 
EMF UML2”, except that it operates with triggers directly instead of signal events. Initially, the first 
state machine region found in the model is compiled into a single Java class, and then loaded into 
the same executor process. States are compiled into Java enumeration values, and the transition 
table is implemented with polymorphism and switch instructions. No action code processed or 
executed for state entries, exits or transition effects at all. 

 
• Technologies used: Implemented in Java. Reads the model by the EMF UML2 API. Generates Java 

code using Java Emitter Templates. Compiles the code using javac. 
 

• Results: 
No technical problems found. See measurement results at the end of the next section. 

 

1.6 Compilation of UML2 model to C without action code and debugging 
support 

 

• Directory names:  
o compiler-noDebug-javaUML2-jni 
o compiler-noDebug-javaUML2-stream 
o compiler-noDebug-javaUML2-socket 
o compiler-noDebug-javaUML2-file 

 
• Reuse: These case studies are reusing code from compiler-noDebug-javaUML2 

 

multi threaded execution 
with ForkJoinPool 700 1000 24 4113 

multi threaded execution 
with ForkJoinPool 10000 1000 10 45799 

multi threaded execution 
with ForkJoinPool 10000 1000 24 51497 



6 
 

• Short description: Every case study compiles the first state machine region found in the given model 
into C code. They have the same execution semantics as described in the previous case study. In the 
first three cases the triggers to be processed by the state machine are generated by an executor 
process, which is implemented in Java. These are different only in the communication scheme. The 
first uses Java Native Interface to implement transition logic in the state machine, so the C code is 
compiled into a dynamic library, which is loaded by the executor process into the JVM. The second 
one uses the standard input and output streams to communicate with the Java executor from a 
separate process, and the third behaves the same, just uses TCP sockets instead of the standard 
streams. Finally, the communication is unidirectional in the fourth solution, as it only sends a trace 
in a regular file to the host process, but it generates the triggers for itself. 
 

• Technologies used: Implemented in Java. Reads the model by the EMF UML2 API. Generates C code 
using Java Emitter Templates. Compiles the code using the GNU Compiler Collection. The different 
versions are using regular files, TCP sockets and JNI. 
 

• Results: The last case study implements only a unidirectional channel, because bidirectional inter-
process communication through a regular file would require additional synchronization, e.g. locking. 
However, it could be developed into a shared memory solution using memory mapped files. As using 
a TCP connection is very reliable, easy to use and relatively fast, it is recommended to connect an 
external process to a debugger. It is the most common solution used in many existing products. 
The case studies were measured on a simple, two-state machine processing one million random 
triggers. Measurement results on Ericsson managed workspace, HP EliteBook8540w, Intel Core i5 
CPU @ 2.53 GHz, 4 GB RAM, 64 bit Windows 7: 

 

Case study Avg. compilation Avg. execution Total 
compiler-noDebug-javaUML2 1295 ms 136 ms 1431 ms 
compiler-noDebug-javaUML2-jni 2605 ms 135 ms 2740 ms 
compiler-noDebug-javaUML2-stream 895 ms 3031 ms 3926 ms 
compiler-noDebug-javaUML2-socket 1789 ms 45817 ms 47606 ms 
compiler-noDebug-javaUML2-file 1717 ms 3027 ms 4744 ms 

 

1.7 Compilation of UML2 model to Java with Eclipse Debugging Framework 
support, without action code 

 

• Directory name: compiler-edf-javaUML2 
 

• Reuse: This case study is reusing code from compiler-noDebug-javaUML2 
 



7 
 

• Short description: The base execution semantics is the same as in the previous group of case 
studies. It is able to step the state machine using the Eclipse Debugging Framework with the 
standard debugging tools on user interface. When execution is suspended, the current state is 
shown in the Variables view of Eclipse. It also provides a custom launch configuration to select 
which state machine should be executed. 
 

• Technologies used: Implemented in Java. Reads the model by the EMF UML2 API. Generates Java 
code using Java Emitter Templates. Compiles the code using javac, and loads it into the same 
process. Eclipse Debugging Framework is used to implement stepping through the execution. The 
launch configuration window contains a little amount of UI code copied almost unchanged from 
Moka. 
 

• Results: Integration with Eclipse required a lot of additional code compared to the initial code base 
size, but most of this code is general and reused from a tutorial. Writing the domain-specific parts of 
the debugger code was simple after the EDF cooperating layer was established. 
The measurement process was the same as in the previous section. Results on Ericsson managed 
workspace, HP EliteBook8540w, Intel Core i5 CPU @ 2.53 GHz, 4 GB RAM, 64 bit Windows 7: 
 
Case study Avg. compilation Avg. execution Total 
compiler-edf-javaUML2 169 ms 449 ms 618 ms 
compiler-noDebug-javaUML2 1295 ms 136 ms 1431 ms 
 
Comparing to the non-EDF version, the execution is slightly slower, because it checks whether to 
stop at possible breakpoints after every transition. The difference in the compilation time is 
insignificant, as the two solutions are practically using the same method to generate the same code. 

1.8 Comparison of state machine and basic ALF action code generation to 
C++ and Java, without debugging support 

 

• Directory name: compiler-noDebug-javaUML2-C-Java-alf-ast 
 

• Reuse: These case study is reusing code from compiler-noDebug-javaUML2 and interpreter-
noDebug-javaUML2-alf-ast-jit 
 

• Short description: The single test model is compiled to C++ and Java languages. Both executable can 
create a predefined number of state machine instances, and send another number of random 
events to these machines. The behavior of compiled state machines are semantically equivalent 
with the case study described in 1.3, so basic action code with assignments, conditionals and 
calculations is supported. Event dispatcher is scheduled with round-robin. The state machine 
transition table is implemented with nested switch-case constructions in each language. 



8 
 

• Technologies used: Implemented in Java. Reads the model by the EMF UML2 API. Generates C++ 
and Java code using Java Emitter Templates. Reads and compiles ALF by its Xtext-generated AST. 
Compilation is done with javac and gcc. 
 

• Results: The measurements below are average values of 50 independent executions. They not 
include compilation and other conversion times, except just-in-time compilations in case of two 
interpreters, which were done on separate threads. Each machine received 10000 events. Tests 
were run with different number of state machine instances, on different hardware and software 
configurations. Results from previous case studies in section 1.3 are also detailed here to ease their 
comparison. 
Results on Ericsson managed workspace, HP EliteBook8540w, Intel Core i5 CPU @ 2.53 GHz, 4 GB 
RAM, 64 bit Windows 7: 
 
Case study 1000 instances 5000 instances 
Compiled to C++ 233 ms 1291 ms 
Compiled to Java 496 ms 2849 ms 
Interpretation in Java 11435 ms 69288 ms 
Interpretation in Java with JIT to Java 7295 ms 29796 ms 
Interpretation in Java with JIT directly to bytecode 1468 ms 23583 ms 
 
Results on Lenovo T530 (N1B54HV), Intel Core i5 CPU @ 2.60 GHz, 4 GB RAM, 64 bit Linux Mint 13: 
 
Case study 1000 instances 5000 instances 
Compiled to C++ 304 ms 1821 ms 
Compiled to Java 332 ms 1802 ms 
Interpretation in Java 5990 ms 57815 ms 
Interpretation in Java with JIT to Java 2412 ms 11615 ms 
Interpretation in Java with JIT directly to bytecode 2321 ms 9824 ms 
 
Results from both tables are summarized on the chart below. The maximum of the Y axis is limited 
to 35 seconds. As interpretation with 5000 instances took much more time than this, the two 
rightmost columns are truncated to make shortest run times displayable. The different 
characteristics of Java on the two different software configurations are clearly visible, as the 
hardware is almost the same for both machines. Interpreters with just-in time compilation are 
converging to the performance of compiled executables. As direct compilation to JVM bytecode is 
faster than through Java source text, the bytecode JIT converges faster. Compiled Java and C++ have 
almost the same performance because there were no really high-performance calculations in the 
tested models, and JVM also uses its JIT while running the bytecode. 



9 
 

 
 

1.9 Compilation with EMF-IncQuery and the EMF UML2 API 
 

• Directory name: compiler-noDebug-IncQuery 
 

• Reuse: This case study is reusing code from compiler-noDebug-javaUML2 
 

• Short description: Includes a single-threaded abstract compiler which loads the input EMF UML2 
model, finds all the classes inside the model and compiles a single state machine region from each of 
them into a Java class. The abstract compiler has two implemented realizations, one of which reads 
the model by the EMF UML2 API and one with the use of EMF-IncQuery. In the case of EMF-
IncQuery, this case study aims to examine only the startup speed of the framework in order to see 
whether incrementality comes with a major cost in time at first compilation. In addition, the case 
study also compares the memory consumption of the two solutions. No action code processed or 
executed for state entries, exits or transition effects at all. 
 

• Technologies used: Implemented in Java. Uses the EMF UML2 API and EMF-IncQuery.  
 

• Results: The test cases were generated with a Java class also included in this case study. In each test 
case every class consisted of 10 states (plus the initial pseudostate) and 20 transitions (plus one 
from the initial pseudostate). Measurement results on DELL Inspiron N5110, Intel Core i5 CPU @ 
2.50 GHz, 4 GB RAM, 64 bit Windows 7. Note: This experiment only aims at evaluating the initial 
round of compilation, therefore IncQuery was not used for incremental translations. 
 

0 ms

5000 ms

10000 ms

15000 ms

20000 ms

25000 ms

30000 ms

35000 ms

C++ Java JIT-bytecode JIT-Java Interpretation

1000 instances (HP) 1000 instances(Lenovo) 5000 instances (HP) 5000 instances (Lenovo)



10 
 

Number of classes 
in test case 

Compilation time (in seconds) Memory consumption (in MiBs) 
EMF UML2 API EMF-IncQuery EMF UML2 API EMF-IncQuery 

10 2.5 2.7 20 23 
100 12 15 58 80 
1000 84 93 340 436 
10000 1494 (25 mins) 2217 (37 mins) 713 2193 

 
As the results show, there is no major cost of using EMF-IncQuery on small test cases. With the size 
of the model increasing, however, the difference also becomes greater, EMF-IncQuery being 1.5 
times slower and using up 3 times more memory on the largest test case. The difference in memory 
consumption is between 30 and 40 percent on the second and third test cases with no significant 
difference in speed which shows that memory consumption is the more important matter to be 
taken into consideration when using EMF-IncQuery. This case study also made it clear that in case of 
a model compiler, incremental techniques must be used because otherwise compilation can become 
very slow. 
 

1.10 Scheduler Case Studies 
 

• Directory name: experiments/SchedulerCaseStudies 
 

• Short description: This case study compares different methods to implement simulation of a 
scheduling mechanism. It compares the performance and capabilities of these methods. Results are 
described in /docs/slides.pptx. In this case study a simple example is manually implemented in the 
different methodologies, no code generation is done. 
 

• Technologies used: The case study compares several methods: 
o Static scheduling (the order of the instructions is determined at compile-time) in C 
o Static scheduling in Java 
o Interpretation (one instruction is executed at a time) 
o Scheduling by multiple threads with blocking or yielding  
o Scheduling by coroutines in Java with the coroutines package 
o Scheduling by coroutines in C with Duff’s device 

 
• Results: 

o Interpretation speed is not comparable with the speed of native code execution.  Even 
without action code, it is ~20 times slower than native execution. 

o Scheduling by multiple threads is not usable when running more than a few active objects. 
Thread pools are not usable when threads become blocked. 

o The coroutines package seems to be unreliable.  
o There is no big difference between the native execution speed of C and Java. 

 



11 
 

 

1.11 Compilation of UML2 model to C code with different scheduling 
strategies, without debugging 

 

• Directory name: experiments/compiler-noDebug-javaUML2-schedule 
 

• Reuse: This case study is reusing code from experiments/compiler-noDebug-javaUML2-file 
 

• Origin: This case study is based on the results of experiments/SchedulerCaseStudies 
 

• Short description: This case study loads a UML2 model and extracts a single state machine without 
action code. It compiles the state machine into a C class. Four different executables are built from 
the generated C class: 

o Pure evaluation – just evaluates the code without scheduling. State machines are run 
sequentially. 

o Non-deterministic evaluation – evaluates the code but switches between active state 
machines with a given probability. 

o Tracer evaluation – same as non-deterministic, but logs each executed instruction. 
o Follower evaluation – loads the output of the tracer and performs exactly the same 

sequence of instructions. 
 

• Technologies used: The model is loaded using the UML2 API. C code is generated, make program is 
used to build the C files, the C code follows the coroutine paradigm with Duff’s device. 
 

• Results: 
o The performance of the scheduled code is comparable to the performance of the pure code. 

It slightly deteriorates with the increasing number of context switches, but the worst 
performance, when there is a context switch after every executed instruction is still only 10 
times slower than native code, that is far better than the performance of the interpreted 
code, even without executing action code. 

o The performance of non-deterministic evaluation and follower evaluation were similar. 
 
 

1.12 Compilation of UML2 model and Alf code with nondeterministic and 
pure scheduling to C code without debugging 

 

• Directory name: experiments/compiler-noDebug-javaUML2-C-schedule-alf-ast  
 



12 
 

• Reuse: This case study is reusing code from experiments/interpreter-noDebug-javaUML2-alf-ast and 
a models from experiments/test-models 
 

• Origin: This case study is based on the results of experiments/compiler-noDebug-javaUML2-
schedule 
 

• Short description: This case study loads a UML2 model and extracts a single state machine with 
action code specified in a comment in Alf language. It compiles the state machine into a C class. Two 
different executables are built from the generated C class: 

o Pure evaluation – just evaluates the code without scheduling. State machines are run 
sequentially. 

o Non-deterministic evaluation – evaluates the code but switches between active state 
machines with a given probability. Switch can occur after each instruction generated from 
Alf code. 

 
• Technologies used: The model is loaded using the UML2 API, the Alf code is parsed using the 

org.eclipse.papyrus.alf.sandbox.editor.feature package. C code is generated, make program is used 
to build the C files the C code follows the coroutine paradigm with Duff’s device. 
 

• Results: 
o It is hard to generate code according to the Alf AST. It is mostly a technical problem. First, 

the AST is generated from an XText grammar, and parsed by an LL parser. The grammar had 
been manually left-factored to eliminate left-recursion, and the AST reflects this. There are 
lot of ambiguity in the grammar, that generates nodes like 
“Feature_Or_SequenceOperationOrReductionOrExpansion_Or_Index”. I found no type 
resolution for the AST, so the types of the generated C fields are assumed to be int. 

o The performance benefit of code generation is even more obvious compared to the 
interpreted version of the case study found in experiments/ interpreter-noDebug-
javaUML2-alf-ast. 

 

1.13 Compilation of UML2 model to Java with action code, running as a Moka 
execution engine with Java Debug Interface support 

 

• Directory name: compiler-moka-jdi-javaUML2 
 

• Reuse: This case study is reusing code from compiler-noDebug-javaUML2-C-Java-alf-ast 
 

• Short description: The implemented behavior is semantically equivalent with the case study 
documented in section 1.3. It is an Eclipse plugin, which adds a new execution engine into Moka. 
The user can launch a single state machine, which is first compiled to Java, then started in a separate 



13 
 

debugger process. When a Moka breakpoint on a state is hit, it is highlighted on the diagram, but 
does not suspend the execution. 
 

• Technologies used: Implemented in Java. Reads the model by the EMF UML2 API. Generates Java 
code using Java Emitter Templates. Compiles the code using javac. Moka serves as an adapter on the 
top of Eclipse Debugging Framework, and also responsible for visualization. Breakpoint support is 
implemented with Java Debug Interface. JSR-045 is used to map source locations between the 
generated java code and the original model. 
 

• Results: No technical problems found. However, as the implementation is partial the integration 
with Moka is not fully tested. 
 

2 Summary 
 

Follows the summary of the most important results of the case study experiments: 

• EMF-UML2 is slow. Around 10 times speedup can be achieved when using a model 
representation optimized for interpretation. 

• Alf Xtext grammar is left-factored, and very complicated in some cases. It was very hard and 
inefficient to implement even a basic interpreter on this representation. 

• Direct compilation to JVM bytecode is more efficient than generating Java source and compiling 
it with javac, however this is a lot harder and more error-prone task as there is no real Java 
compiler in the process. 

• In case external process is to be connected to the debugging framework: As using a TCP 
connection is very reliable, easy to use and relatively fast, it is recommended to connect an 
external process to a debugger. It is the most common solution used in many existing products. 

• Integration with Eclipse required a lot of additional code compared to the initial code base size, 
but most of this code is general and reused from a tutorial. Writing the domain-specific parts of 
the debugger code was simple after the EDF cooperating layer was established. 

• Comparing to the non-EDF version, the execution with debug support is slightly slower, because 
it checks whether to stop at possible breakpoints after every transition. The difference in the 
compilation time is insignificant. 

• There is no major cost of using EMF-IncQuery on small test cases. With the size of the model 
increasing, however, the difference also becomes greater, EMF-IncQuery being 1.5 times slower 
and using up 3 times more memory on the largest test case used. Memory consumption is the 
more important matter to be taken into consideration.  

• In case of a code generation, incremental techniques must be used because otherwise 
compilation can become very slow. 



14 
 

• Interpretation speed is not comparable with the speed of native code execution.  Even without 
action code, it is ~20 times slower than native execution. 

• Scheduling by multiple threads is not usable when running more than a few active objects. 
Thread pools are not usable when threads become blocked. 

• The Java coroutines package seems to be unreliable.  
• There is no big difference between the native execution speed of C and Java. 
• The performance of the coroutine scheduled code is comparable to the performance of the pure 

code. It slightly deteriorates with the increasing number of context switches, but the worst 
performance, when there is a context switch after every executed instruction is still only 10 
times slower than native code, that is far better than the performance of the interpreted code, 
even without executing action code. 

• No technical problems found with the integration of generated code with the Moka framework. 


	1 Introduction
	2 Case Studies
	1.1 Interpretation over EMF UML2
	1.2 Interpretation with transformation to own representation
	1.3 Interpretation over a custom representation fetched from EMF UML2, with basic ALF action code support and different levels of Just in Time compilation
	1.4 Interpreting UML diagrams with object instances running in parallel, sequentially and in a thread pool
	1.5 Compilation of UML2 model to Java without action code and debugging support
	1.6 Compilation of UML2 model to C without action code and debugging support
	1.7 Compilation of UML2 model to Java with Eclipse Debugging Framework support, without action code
	1.8 Comparison of state machine and basic ALF action code generation to C++ and Java, without debugging support
	1.9 Compilation with EMF-IncQuery and the EMF UML2 API
	1.10 Scheduler Case Studies
	1.11 Compilation of UML2 model to C code with different scheduling strategies, without debugging
	1.12 Compilation of UML2 model and Alf code with nondeterministic and pure scheduling to C code without debugging
	1.13 Compilation of UML2 model to Java with action code, running as a Moka execution engine with Java Debug Interface support

	2 Summary

