
UML Model Execution via Code Generation
Gergely Dévai, Máté Karácsony, Boldizsár Németh, Róbert Kitlei, Tamás Kozsik

Eötvös Loránd University, Faculty of Informatics
Budapest, Hungary

Email: {deva,kmate,nboldi,kitlei,kto}@elte.hu

Abstract—Simulating design models makes early verification
of the software’s business logic possible. Model simulators can
be implemented using an interpreter, but it provides limited
runtime performance. This is only acceptable if the only use
case of the tool is interactive model execution and debugging. If
the model executor tool is to be used for automated regression
testing, execution time becomes an important factor. In such cases
generating code is a better option compared to interpretation.

This paper documents our experience from an ongoing project
which supports both the interactive and the automated model
simulation use cases via code generation. It discusses a handful
of architectural and technical questions to be solved in this setup
and reports on a high performance open source UML model
simulator.

I. INTRODUCTION

The two main use cases of a model simulator are (1)
interactive model execution and debugging and (2) automated
mass test case execution. In the first case, the tool has to

• provide graphical user interface with animation of certain
diagrams (e.g. state machines),

• show object instances and their attribute values,
• support breakpoints both on graphical model elements

(e.g. states and transitions) and in textual action language,
• provide usual debugging features like stopping on break

points, stepping, resuming the execution etc.
In the automated test execution use case the simulator is

used as part of a testing framework: The model is exercised
by a set of predefined test cases in a nightly regression testing
session or before each commit to the software repository. In
this case, the simulator

• has to be fast, and
• has to provide a command line user interface.
Whenever a test case fails during the automated testing

session, it should be possible to examine the cause of the
failure in an interactive session. One possibility to achieve this
is deterministic model execution: The simulator guarantees to
walk through the exact same execution path each time for
a fixed input. However, UML models running with several
instances of active classes can be non-deterministic. A deter-
ministic model simulator chooses only one execution path of
the many possible. This severely limits the testing capabilities
of the simulator. A better approach is to choose randomly
from the possible paths, and make the tool generate execution
traces during automated testing, which can be replayed in an
interactive session.

Section III will show measurement results on the runtime
performance of model execution via interpretation and code

generation. The results make it clear that the requirement
about high runtime performance leads to the code generation
solution. In case of model execution via code generation
a natural question arises: What is the difference between
model execution (simulation) via code generation and model
compilation? While they seem to be similar at first sight, they
are highly different, due to their different purposes:

• Model simulation has to follow as many legal execution
paths during intense testing as possible, to reveal possible
errors. Model compilers have to generate code that takes
one legal execution path and is as performant as possible.

• Model simulation has to check if invariants of the model
(e.g. multiplicity constraints) are kept at runtime. The
code generated by a model compiler will perform no
runtime checks, or just a limited amount, in order to meet
the performance requirements.

• The platform of a model simulator is the one where
models are developed. Model compilation targets a given
platform, independent of the development one, and takes
its specifics into account.

• Model simulation has to connect to the debug framework,
while model compilation has no such obligation.

• Model simulation has to be prepared to replay execution
traces. Model compilers have to support logging only.

• Model simulation can be a single threaded emulation of a
concurrent model. Model compilers have to emit parallel
code, if that is required by the target platform.

• Model simulation has to provide quick feedback about the
correctness of the business logic captured in the model.
Results of the model compiler are deployed on the target
platform, which can be time consuming, and the runtime
results may include platform-specific errors.

The paper is organized as follows. The next section presents
related work. Section III shows the results of an experiment
comparing the runtime performance of model execution via
interpretation, code generation and just-in-time compilation.
An architecture for a code generation based model simulator is
proposed in Section IV, with special attention on the animation
and breakpoint support, the necessary debug symbols, the
debug interface of the target language, then communication
between the debugging front-end and the generated code, and,
finally, the termination of the execution. Section V reports on
the current status and capabilities of the tool which is built
along the architecture discussed in this paper. The last section
concludes the paper with a short summary.



II. RELATED WORK

In this section we give an overview of open source tools
that can simulate UML (or UML like models). The richest set
of model elements is supported by the BridgePoint tool [12],
open sourced [2] in 2014. It is originally based on the Shlaer-
Mellor method [15]. The tool is Eclipse-based. It consists of
UML diagram editors, a model simulator and model compilers.
The simulator animates state machines, supports breakpoints
and provides other standard debugging features. BridgePoint
uses an interpreter to execute models. Our experience shows
that its runtime performance is enough for the interactive use
case, but it needs improvement in the mass test execution use
case.

Foundational UML, or fUML for short [10], is a standard
defining formal execution semantics for a subset of UML. The
goal of fUML is to be a basis for defining precise semantics for
richer UML subsets (like the PSCS [11] standard). A Java-like
textual syntax for fUML, called Alf [9] is also standardized.
There are fUML and Alf reference implementations available.
The fUML reference implementation is written in Java, and
follows closely the formal semantics definition of the standard.
The Alf reference implementation is integrated in the Eclipse
environment using Xtext for parsing and OCL [16] for seman-
tic checks. Alf execution is provided by transformation back
to fUML activities and leveraging the fUML implementation.
The efficiency of model execution was ignored in these
implementations.

The above mentioned reference implementations them-
selves do not provide model debugging or animation support.
Moka [8] is an extension to the Papyrus UML editor [13]. It
simulates UML activity diagrams and provides basic debug-
ging support, such as breakpoints on actions. Moka uses the
diagrams of Papyrus as graphical front-end for simulation and
debugging, and uses a modified version of the fUML reference
implementation for the execution logic. Moka also provides an
interface which allows the definition of new execution engines.
We also use this technology to inegrate our work with Papyrus,
see section IV for the details.

Moliz [7] is a testing and debugging framework for fUML
activities. It defines a test specification language, and extends
the fUML reference implementation with debugging and trac-
ing capabilities. The execution traces are used to decide if a
given test case passes or fails. Since Moka and Moliz use the
fUML reference implementation, the performance limitations
discussed earlier also apply to these projects, questioning their
scalability in the mass test execution use case.

Topcased [14] is a set of plugins for the Eclipse platform,
which is mainly aimed at the implementation of critical
embedded systems. It uses Papyrus for model editing, and
adds simulation capabilities. Topcased also provides visual
model simulation for state machines, but no breakpoint support
is implemented, neither have we found any way to use it
for automated testing. The project is discontinued and is
under migration to the PolarSys consortium [17]; however,
the model execution capabilities of Topcased are not planned

to be migrated. The long-term plan is to use Moka for that
purpose.

Regarding the closed source commercial products, the Ra-
tional Rhapsody tool [3] also needs to be mentioned as it
provides model execution capabilities.

III. INTERPRETATION, CODE GENERATION AND JIT

An interpreter stores the internal state of an executed model
(object instances, values of their attributes and actual state ma-
chine states, message queues of signals etc.) as data. It queries
the model to find out the next action to take and changes
the model execution state accordingly. Another possibility to
achieve model execution is to compile the model to program
code, then build and run it. It is also possible to combine
interpretation and compilation using just-in-time-compilation
(JIT). In this case the model is executed by an interpreter, but
frequently executed or critically slow fragments are compiled,
built and loaded into the process of the interpreter.

In order to compare the performance of the three discussed
options, we have created an experiment with models limited
to a single state machine. A predefined number of instances of
the state machine is created and a given number of signals are
sent to each of them. During the triggered a transitions, action
code snippets (assignments, conditionals and basic arithmetic)
are executed in the transition effect, state entry and exit.

In the compilation cases, state machine logic is implemented
via nested switch-case statements. The interpreter uses an
event matrix to look up the next state using current state
and the received event. In case of JIT, the action code
statements are compiled and the state machine logic itself
remains interpreted. Two variants of the this solution have been
implemented: one that generates Java source code and uses the
Java compiler to compile it to bytecode, while the other one
generates bytecode directly using the Javassist library [6].

Table 1 shows execution times in milliseconds of the four
different implementations executing the same models with
1000 and 5000 instances and processing 10000 signals per
instance. Two different machines/platforms have been used
to increase confidence in the experiment: Configuration C1

denotes a HP EliteBook8540w laptop with Intel Core i5 CPU
@ 2.53 GHz and 4 GB RAM, running 64 bit Windows 7. C2

is a HP EliteBook 9480m machine with Intel Core i5 CPU @
2 GHz and 8 GB RAM, also running 64 bit Windows 7.

Technology 1000 instances 5000 instances
C1 C2 C1 C2

Interpreter 11436 7687 69288 41192
Generated code 496 354 2849 2339

JIT to Java 7295 4986 29796 13134
JIT to bytecode 1468 1332 23583 10060

Table 1: Execution times (ms) of interpretation, generated code
and JIT

The results show that, in this experiment, interpretation
turned out to be 18-24 times slower than running generated



code. The different versions of JIT compilation are better, but
still 3-14 times slower than generated code. (We have carried
out further experiments, with very similar results.) This means
that designers of high-performance model execution engines
targeting mass test execution have to seriously consider code
generation as the technology to build upon.

IV. ARCHITECTURE

This section discusses various aspects of an architecture that
supports code generation based model execution.

A. Overview

Figure 2 shows an overview of the architecture of the tool
this experience report is based on. The figure is color-coded:
blue means third party components we build on, while the
orange elements were created to make model execution via
code generation possible.

In this setup, the Papyrus editor is used to edit the UML
models, which are stored over the EMF-UML2 [1] meta model.
This is the input of our code generator, which translates
the model to Java. The translation needs to be incremental
in order to have the generated code ready for execution
whenever the user requests execution in the interactive use
case. The generated code is compiled (also incrementally) by
the standard Eclipse Java tooling.

When model execution or debug session is started by the
user, the compiled code is loaded into a newly created JVM.
This Java process is the back-end of the session, managed
through the Java Debug Interface (JDI). The front-end (i.e.
debug controls, animation etc.) is realized on one hand by the
Eclipse Debug Framework (the standard debug tools), and on
the other hand by Moka (the graphical model debugging and
animation functions). In order to connect the front-end with
the back-end, a connection layer is needed which relays the
debugging and animation events in both directions.

In order to find the connection between the running Java
code in the back-end and the animated model in the front,
a set of debug symbols are used, which had been created by
the model translation process in addition to the generated Java
code. Section IV-C gives further details on these symbols.

B. Animation and breakpoint support

While the model is being executed, the user should be able
to open up state machine diagrams corresponding to selected
object instances, and see the current state of the instance
or the active transition highlighted. In order to realize this,
information about entering into states and fired transitions
is needed from the back end. Similarly, if the user places
breakpoints on states, transitions or on lines of action code
in the model, we need to know when does the Java code in
the back-end reach these particular points of execution.

We realize both animation and breakpoint support using
Java breakpoints. Each breakpoint in the model is mapped to
breakpoints in the generated Java code. When a state machine
diagram needs to be animated, Java breakpoints are placed
on the code lines corresponding to entering into states and

Fig. 2: Architecture overview

triggering transitions. These breakpoints are managed through
the Java Debug Interface (JDI). Whenever a breakpoint is hit
in the Java code, the execution is stopped and a notification is
delivered from the JDI. If the breakpoint being hit corresponds
to a breakpoint in the model, the user is notified and the
runtime waits for user action (e.g. stepping or resuming
the execution). If the breakpoint was created for animation
purposes, the corresponding state or transition is highlighted
for a given amount of time, and then the execution of the Java
code is resumed via the JDI.

Note that creating Java breakpoints for animation purposes
might result in a high amount of breakpoints managed (cre-
ated, disabled, enabled, removed) by the JDI. In order to find
the right policies that ensure the scalability of the solution, we
have designed experiments to test the performance of the JDI,
see Section IV-D for the results.

C. Debug symbols and mappings

During compilation of Java class files, the compiler inserts
the information needed to find the line of source code corre-
sponding to a given instruction. However, interactive model
debugging should support highlighting the actual state in
running state machines or stepping through them as well as
stepping over lines of action code or highlighting them. To
provide these debugging features, a mapping between model
elements and their generated Java source code is needed.

This problem is partially solved by JSR 45: Debugging
Support for Other Languages [5]. It provides a standard way
for correlating Java byte code with source code of textual
programming languages other than Java. JSR 45 uses a data
structure called Source Map (SMAP) to specify the mapping
between the lines of code in the original source language
(which could be for instance the action language of the
modeling system) and the generated Java source code. These
source maps are injected into the binary class files using the
SourceDebugExtension attribute after their compilation.



The Java Debug Interface can then be configured to use the
given source mapping while accepting and reporting break-
point and other location information during a debug session. A
single class file could have multiple attached source mapping
information for multiple source languages. Each Source Map
has a name, and the debugger will use this identifier to select
the appropriate mapping.

Unfortunately, this source mapping facility works only for
textual languages. However, for ordinary model elements, like
states and transitions which are represented mostly graphically
on the user interface, a virtual line mapping can be provided.
For non-textual elements, the Source Map will contain virtual
line numbers, and another mapping will be used to resolve
these into the original UML elements. Like the Source Map,
this data can also be created during Java code generation.
While it is also possible to store this mapping from virtual
line numbers to UML elements directly inside a class file
using a custom attribute, in the tool presented in this paper
it is currently serialized into a separate binary file and loaded
by the debugger itself.

Because the naming rules of UML allow element names
which are not valid as Java identifiers, the code generator
assigns a unique Java identifier to each UML named element
that has a corresponding Java element. Names in the action
code are also provided with unique identifiers. The resulting
identifier-to-name mapping is stored along with the virtual line
mapping to let the development environment show the original
names of model elements during debugging.

D. Using the Java Debug Interface

The Java Debug Interface (JDI) defines a high-level Java
interface to access debugging capabilities of a running Java
virtual machine. It is the front-end part of the Java Platform
Debugger Architecture (JPDA) [4]. Eclipse Java development
tools (JDT) also uses this technology to implement its debug-
ger. As JDI supports the inspection and manipulation of the
connected virtual machine’s state through a simple API, it is a
convenient choice to provide interactive visual debugging for
UML models. The API is provided under the com.sun.jdi
package, bundled with JDK distributions.

JDI provides the following four ways to connect a debugger
with a target process:

1) Debugger launches target
2) Debugger attaches to running target
3) Target attaches to running debugger
4) Target launches debugger
The default Java process launching mechanism of Eclipse

JDT uses the third option, as it creates a listening connector
and then launches the target process with special command
line options. These options are commanding the target virtual
machine to connect to the debugger process through a socket.
From this point, we can use a VirtualMachine object in the
debugger to send commands to and receive events from the
target virtual machine. This mechanism of JDT could be
entirely reused to start a model executor process. Only the
underlying IDebugTarget instance should be replaced to

a custom implementation. IDebugTarget is an abstraction
defined by Eclipse Debug Framework (EDF), which is used
to control a debugger from the user interface (like stepping,
suspending and resuming), and to coordinate the presentation
of the data fetched from the target process (for instance
threads, stack frames and local variables).

Communication with the target virtual machine is asyn-
chronous. The debugger can set different kind of event re-
quests on a machine, for instance to get notification about
a breakpoint hit at a specified location. The virtual machine
will provide events in an event queue, corresponding to event
requests. Each request could be enabled or disabled, and has
a suspend policy. Based on the suspend policy of the corre-
sponding request, the processing of an event could suspend
all threads of the target machine. It also could suspend only
the source thread of the event, or continue its work without
interruption. When the machine is suspended by an event, the
execution could be resumed manually. Events are delivered in
sets by the event queue, as several events could be fired by a
virtual machine at the same time.

To place a breakpoint in the model execution process, the
debugger creates a breakpoint event request. This request
contains only the location of the given breakpoint. The cal-
culation of this location involves the usage of debug symbols
and mappings presented in the previous section. For example,
when a breakpoint is placed on the entry of a state in a state
machine, the location resolution will follow the next steps:

1) Calculate the fully qualified name of the Java class
which contains the code for the given state

2) Fetch the virtual line number of the given state entry
3) Get a reference to the class from the target virtual

machine
4) Use the class reference and the virtual line number to

get a JDI location
As a Source Map is installed on the generated class, the map-
ping between virtual line numbers and lines of the generated
Java source code is available. It makes it possible to resolve
the virtual line number to a bytecode offset inside a method.
Before resolving, the debugger can select which Source Map to
use from the available ones using the setDefaultStratum
method on the VirtualMachine instance.

The target machine, once it hits a breakpoint, emits a
breakpoint event through its event queue. The breakpoint event
contains the JDI location of the breakpoint. The location
specifies a virtual line number and a reference to the containing
class. The resolution to a model element can be done in a
similar way as in the previous case, using the debug symbols
saved for the class earlier at code generation time.

When a breakpoint event suspended the virtual machine, its
internal state can be inspected, or even modified. For example,
Java local variables can be mapped to variables in action code
of the modeling language, and presented to the user. It is also
possible to implement expression evaluation, and to alter the
value of a variable.

The VirtualMachine object can also be used to ter-
minate the target machine or to disconnect from it, enabling



another debugger to attach to the target.
Models that have to be handled by the model simulator

may contain a large number of model elements, therefore they
induce a large number of potential breakpoint locations. We
have conducted an experiment to determine how the number
of breakpoints affects performance. The experiment was run
on an Intel Core i7 CPU @ 3.4 GHz and 8 GB RAM, running
64 bit Windows 8.

BPs 10 100 1000 10,000 20,000
Passes 5000 500 50 1 1
BP hits 50000 50000 50000 10000 20000

Run 4464 5126 12175 16952 69482
Run/100 8.928 10.25 24.35 169.52 347.41

Set 112 1602 4965
Disable 66 1750 5753

Table 3: Execution times (ms) of breakpoint scenarios

The test cases in Table 3 set individual breakpoints on state-
ments (which, in the experiment, simply increase a counter) on
separate lines. The row BPs shows the number of breakpoints;
the test cases loop over them Passes times for a total of
BP hits breakpoint hits. When the execution of the virtual
machine hits a breakpoint, execution is handed over to the
testing application.

The tests show that the execution time is quite dependent on
the number of breakpoints: for the same number of total break-
point hits (50,000), the execution time nearly doubles when
using 1000 breakpoints instead of only 10. If we increase the
number of breakpoints further, the degradation is even more
apparent: the average time to hit 100 breakpoints (Run/100
row) doubles between 10,000 and 20,000 breakpoints.

Furthermore, breakpoints have to be set before execution
can progress toward them. Setting a low number (less than
1000) breakpoints is almost instantaneous and not shown in
the table, however, as the number of breakpoints increase, we
see that the cost of simply setting them approaches 10% of
passing through all of them.

These results show that a visual model debugger that is
using generated code for execution must limit the number
breakpoints it uses. Fortunately, the model debugger needs
to keep breakpoints only on lines that correspond to model
elements visible to the user (for animation) and model break-
points set by the user. To further optimize performance, the
debugging environment can disable breakpoints that are likely
to be used again instead of removing them.

We have taken into consideration other methods of com-
munication with the runtime. Because Java technology is used
on both sides of the communication, using virtual memory
is not favourable. Sockets and files could be used to transmit
information, but the debugger provides a higher-level interface.

E. Terminating the execution

Model execution can terminate two ways. Either the model
terminates normally (active object instances get to their final

states or get deleted) or the user stops the execution using
the debugging controls on the user interface. The latter one,
premature termination, has to be enabled, because certain
models take a long time to terminate or might not terminate
at all.

Two different kinds of non-termination can be identified.
Either the state transitions of a state machine or one of the
action code blocks of the model may contain an infinite loop.
The non-termination of a state machine is easier to handle,
because control is given back to the runtime at least once in
every cycle.

User initiated termination of the execution can be done in
different ways. First, interrupting the JVM is the simplest
solution, however in general, it prevents the runtime from
freeing its allocated resources, like log files written. On a Unix
system, sending a kill signal to the JVM process enables it to
run its resource deallocation code, but this is not a platform-
independent way of stopping the virtual machine.

The other way to stop the program is to somehow com-
municate with it to stop its execution. It could be possible
to use the debugger to this purpose, but our goal was to
stop the virtual machine regardless if it has an attached
debugger or not. For this, we have implemented an alternative
way of communication with the runtime using sockets. The
development environment can send a terminate message to
the runtime when the user decides to stop the execution.
When the runtime is initialized, a control thread is started
to receive control messages like the terminate message over
the socket connection with the environment. When it receives
the terminate message it closes all open resources, and finally
terminates the JVM.

V. TOOL IMPLEMENTATION

We are in the process of developing a proof-of-concept
model executor tool [18] which we are releasing on a monthly
basis. The tool is usable in two ways: via an interactive GUI
integrated with Eclipse, and via a command line interface. This
section gives an overview the capabilities of the two as of the
time of the writing of this paper.

The interactive user interface is used to visually inspect
the execution of a model. It uses the Moka extension of the
Papyrus framework to display and edit the model elements.
The tool currently supports a reduced set of UML features:
only the state machine of a single instance can be executed,
and only flat state machines are supported. Classes can have
attributes, operations and associations with multiplicities. The
state machine of the class is driven using signal events: they
can be sent from action code in the model to the running
instance and to external Java code, and external Java code
can also generate signal events. The execution engine at each
step dispatches the next available signal, and then progresses
to the appropriate state. Action code is executed in a run-to-
completion manner.

Visually, the most eye-catching feature of the tool is its
capability to visualise model execution. Once a model is
loaded, the user has to make a debug configuration, where



Fig. 4: The GUI of the tool

he chooses the class that will be instantiated, and a feed
function that drives the model by generating events. When
execution is started, the active state is visually highlighted
on the model. The user can make execution progress to the
next state manually, but by default animation is turned on:
the transitions happen after a set time amount. The user can
set breakpoints on the states and transitions, and when one is
hit, execution is paused. The tool can also log transitions, and
store execution traces which can later be replayed, producing
the same execution.

Figure 4 shows a model being executed, stopped at a break-
point on state Hello. As logging is turned on by default, the
bottom of the screen shows the most recent state transition log
messages. As execution is paused, the user can conveniently
turn off the animation option in the Animation Configuration
view if he so chooses, and then continue execution with the
Suspend toolbar button, the leftmost one depicted. The Debug
view must be open and the executing state machine selected
for the Suspend button to be enabled; while it is possible to
have several models executing at the same time, it is usually
hard to follow and inadvisable, as they have to use the same
display.

The command line tool is used to automate test case
execution. It uses the same execution engine as the GUI
tool, therefore it expects similar arguments: model, class, feed
function, and path settings for source and generated files, logs
and traces. Figure 5 shows a sample output of the command
line tool after having run the same model as Figure 4. Options
about where to place the generated files and how detailed the
log messages should be are explicitly visible here; they are
also available on the GUI tool, set to reasonable defaults.

VI. SUMMARY

In this paper we have analysed technical aspects of code
generation based UML model simulation. The main motivation
for this solution is higher runtime performance, required by
non-interactive model-level testing use cases.

Fig. 5: The command line interface of the tool

The technical content of the paper is based on the design and
implementation of a model simulator in industrial cooperation.
The goal of the paper is to share the experience we gained
from this project with the community working with executable
modeling tools.

ACKNOWLEDGMENT

We express our gratitude to Ericsson for the financial
support of this research.

REFERENCES

[1] EMF-UML2 project. http://wiki.eclipse.org/MDT-UML2.
[2] Executable Translatable UML Open Source Editor.

https://www.xtuml.org/.
[3] IBM. Rational Rhapsody family. www.ibm.com/software/products/en/

ratirhapfami.
[4] Java Platform Debugger Architecture (JPDA). http://docs.oracle.com/

javase/8/docs/technotes/guides/jpda/.
[5] Java Specification Requests 45: Debugging Support for Other Lan-

guages. https://jcp.org/en/jsr/detail?id=45.
[6] Javassist library. http://www.csg.ci.i.u-tokyo.ac.jp/∼chiba/javassist/.
[7] Stefan Mijatov, Philip Langer, Tanja Mayerhofer, and Gerti Kappel. A

Framework for Testing UML Activities Based on fUML. In Proceedings
of the 10th International Workshop on Model Driven Engineering,
Verification and Validation (MoDeVVa) co-located with 16th Interna-
tional Conference on Model Driven Engineering Languages and Systems
(MODELS 2013), pages 1–10, 2013.

[8] Moka. http://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution.
[9] Object Management Group. Action Language for Foundational UML

(ALF), standard, version 1.0.1. http://www.omg.org/spec/ALF/, 2013.
[10] Object Management Group. Semantics of a Foundational Subset for

Executable UML Models (fUML), standard, version 1.1.
http://www.omg.org/spec/FUML/1.1/, 2013.

[11] Object Management Group. Precise Semantics of UML Composite
Structures (PSCS), standard in preparation, version 1.0 beta 1.
http://www.omg.org/spec/PSCS/1.0/Beta1/, 2014.

[12] OneFact. BridgePoint xtUML tool. http://onefact.net/.
[13] Papyrus. http://wiki.eclipse.org/Papyrus.
[14] Nadege Pontisso and David Chemouil. Topcased combining formal

methods with model-driven engineering. In Automated Software En-
gineering, 2006. ASE’06. 21st IEEE/ACM International Conference on,
pages 359–360. IEEE, 2006.

[15] Sally Shlaer and Stephen J. Mellor. The Shlaer-Mellor method. Project
Technology white paper, 1996.

[16] Technical Committee ISO/IEC JTC1, Information technology, in collab-
oration with the Object Management Group (OMG). Object Constraint
Language (OCL). Standard, International Organization for Standardiza-
tion, Geneva, Switzerland, April 2012.

[17] Topcased migrates to PolarSys.
http://polarsys.org/topcased-migrates-polarsys.

[18] xUML-RT Model Executor.
http://modelexecution.eltesoft.hu/.


